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A general approach to the problems of quantizing fields which
have infinite-dimensional invariance groups is given. Space and
time are treated on a completely equal footing. A Poisson bracket
is defined by means of Green’s functions, independently of the
discovery or recognition of canonical variables, and is shown to
satisfy all the usual identities. In accordance with the measure-
ment theoretical foundations of the quantum theory, the Poisson
bracket (i.€., commutator) is defined only for physically measur-
able group invariants. The Green’s functions give a direct descrip-
tion of the propagation of small disturbances arising from a pair
of mutually interfering measurements.

In order to establish a correspondence between this approach

and conventional canonical theory, a motivation for the adopted
definition of the Poisson bracket is outlined with the aid of the
fundamental theorem of canonical transformation theory. The
rest of the discussion is logically independent of this, however.
The general theory of “wave operators” and their associated
Green’s functions is briefly reviewed. Specific details connected
with the group theoretical side of the theory are handled in such
a way that problems of constraints are completely avoided. In
the last section the general method is applied to the Yang-Mills
field, as a nontrivial example. The problem of factor ordering is
not studied.

INTRODUCTION

HE development of the quantum theory of any
field, or set of interacting fields, whose dynamical
equations remain invariant under an infinite-dimen-
sional group of transformations is always beset with
special problems having no counterparts in simpler field
theories. Historically, the first example of this situation
was provided by the electromagnetic field and its
associated group of gauge transformations. The
problems of gauge invariance have by now been studied
exhaustively, and workable techniques have been
developed for dealing with them in a variety of quantum
contexts. Moreover, the electromagnetic field itself
has provided a prototype to which all generalizations
of these techniques to other fields have been applied
as a check.
Experience has shown, however, that the electro-
magnetic field is probably not a very good prototype.
Its invariance group, being Abelian, is too simple to

indicate those generalizations which are likely to

reveal the group theoretical structure of more compli-

* This research was supported in whole under contract by the
U. S. Air Force monitored by the AF Office of Scientific Research
of the Air Research and Development Command,

cated theories. Because of the consequent absence of a
clear route to follow, effort has tended to spread out in
various directions. One line of investigation has been
to focus on the problem of constraints, to which the
existence of the invariance group in question gives
rise but in the study of which the group itself plays a
minimal role. The trouble with the problem of con-
straints is that its formalization has always necessitated
a falling back on the canonical fundamentals of a
Hamiltonian or quasi-Hamiltonian theory.! The result-
ant asymmetry in treatment of space and time co-
ordinates does not generally fit comfortably with the
invariance group, the parameters of which are space-
time functions having no temporal prejudices. This is
especially true in a generally covariant theory in which
the gravitational field is involved,! but it is also true in
other cases. It is even true for electromagnetism, as
the history of the subject shows. A

It is the purpose of this paper to present the outlines
of a general approach to these problems which dispenses
entirely with Hamiltonian ideas and treats space-time
in a completely homogeneous fashion. The basis for

1P. A. M. Dirac, Can. J. Math. 2, 129 (1950); Proc. Roy. Soc.

(London) A246, 333 (1958); S. Deser and R. Arnowitt, Phys.
Rev. 113, 745 (1959).
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this approach is a definition of the classical Poisson
bracket by means of Green’s functions, which is
independent of any definitions of pairs of conjugate
variables and which is, in effect, a straightforward
extension of a definition originally proposed by Peierls.?
The point of view is here adopted that Poisson brackets
(i.e., commutators) should be defined only between
group invariants. This automatically eliminates the
need for subsidiary conditions, which have always to
be specially tailored to each individual theory and which
have proved so often bothersome in the past. Further-
more, this approach is in accord with the foundations
of the quantum theory as expressed in the general
theory of measurement. Real physical measurements
can be performed only on group invariant quantities,
and the interference between two measurements which,
via the uncertainty principle, in effect defines the
commutator, is most immediately described not in
terms of canonically conjugated variables at a given
instant, but in terms of the Green’s functions which
express the laws of propagation of small disturbances
and which satisfy certain fundamental reciprocal rela-
tions. In quantum electrodynamics this role of the
Green’s functions was demonstrated at a very early
date in the classic paper of Bohr and Rosenfeld,? which
made no use of the Lorentz or any other gauge condi-
tion. The present paper may be viewed as the first step
in an analogous demonstration for the general field
theoretic case.

Section 1 consists of an introductory discussion, in
general terms, of differential “wave operators” and
their associated Green’s functions. In Sec. 2 canonical
transformation theory is introduced in order to arrive
at an appropriate definition for the Poisson bracket in
an arbitrary field theory. Group theoretical details are
examined in Sec. 3, and, with the proof that all the
usual properties, including the Poisson-Jacobi identity,
are satisfied by the suggested Poisson bracket, it is
shown that the definition does not really depend for
its consistency on the canonical arguments of the
preceding section. In the form of the commutator, in
fact, the definition can be justified by appealing solely
to the uncertainty principle and the theory of measure-
ment. Finally, in Sec. 4, the methods of the earlier
sections are applied to a specific example. Since the
author has already given elsewhere* a preliminary
account of the application of these methods to the
quantization of the gravitational field, a different
example, the Yang-Mills field,’ is chosen here.

It will be seen in the course of these derivations that
the group theoretical side of the theory still plays a
relatively small role in spite of the fact that the deriva-

2R. E. Peierls, Proc. Roy. Soc. (London) A214, 143 (1952).

*N. Bohr and L. Rosenfeld, Kgl. Danske Videnskab. Selskab,
Mat.-fys. Medd. 12, 8 (1933).

4 B. S. DeWitt, Phys Rev. Letters 4, 317 (1960).

$C. N. Yang 'and R. L. Mills, h s. Rev, 96, 191 (1954).
See also R. Utiyama, Phys. Rev. 101 1597 (1956).
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tions are now fully ‘“covariant” in the sense that
space and time are placed on a completely equal
footing. In the author’s opinion, however, the role of
the invariance group can be expected to increase when
a study is undertaken of purely quantum problems,
such as the factor ordering ambiguity which is not
considered here. For, as has been emphasized by
Klein,® the quantum theory can be regarded in many
ways as a theory of the infinite dimensional unitary
representations of the invariance groups which char-
acterize the physical system under consideration.

1. WAVE OPERATORS AND GREEN’S FUNCTIONS

The propagation of a small disturbance, whether in
a set of interacting fields, or in an elastic physical
medium, or in a collection of bodies interacting via the
laws of celestial mechanics, is described by a linear
differential equation of finite order, usually not higher
then the second. Let us denote the dynamical variables
appearing in such an equation by symbols such as
¥, ¢ These variables will be functions of one or more
continuous parameters, or “coordinates.” For definite-
ness we shall regard them as functions of four space-time
coordinates x#. It will be obvious, however, that
everything we say will be equally applicable to theories
with either more or fewer parameters, in particular to
systems having only a finite number of degrees of
freedom, with “time’’ as the single parameter.

Different points of space-time will be distinguished by
means of primes: x, 2/, x”/, etc. For compactness the
point at which a given variable, such as ¢, is evaluated
will be indicated by affixing primes to the index appear-
ing on the variable, e.g., ¢*"’. For economy in the use of
primes, the symbol z will also sometimes be used in
place of x to designate a point in space time. Lower case
Latin letters from the beginning of the alphabet
(a,b,c,- - ) will always be associated with the symbol z,
while those from the middle of the alphabet (,7,%,- - )
will be associated with the symbol x.

It will be convenient to express the differential
operator appearing in the propagation equation formally
as a continuous matrix F;j, the equation itself taking
the homogeneous form

f Fiynp¥da’ =0, (1.1)

Typically F,;» will be a linear combination of first or
second derivatives of the delta function of x—x', with
coefficients which may be functionals of some or all of
the field variables appearing in the theory, for example
involving these variables together with their derivatives
up to some small (first or second) finite order.

The F;; will generally have three characteristic

¢ 0. Klein, ‘“Quantum theory and relativity,” essay in Niels
Bokr and the Develoﬁment of Physics, edited by W. Pauli (McGraw-
Hill Book Company, Inc., New York, 1955).
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properties: (1) the property of being self-adjoint; (2)
the property that well-behaved nonvanishing solutions
of Eq. (1.1) really exist ; and (3) the possession of unique
“retarded” and “advanced” Green’s functions. The
property of being self-adjoint is characterized by the
existence of a matrix operator f*;; such that

f (O F i7" — ' Fipp? )d 4!
(0]
"o f (@frijp? =i fripp )’ (1.2)
dxk

for arbitrary ¢‘ and ¢% An immediate corollary of
Eq. (1.2) is

f d‘xf @/ (¢'F iy —yiFyp7)d%%'=0  (1.3)

for fields ¢f, y¥* which vanish sufficiently rapidly in
remote regions of space time, which, in view of the
arbitrariness of ¢ and ¢*, may be expressed simply as

Fij=Fj,. (1.4)

The Green’s functions associated with F;» are
characterized by the equation '

fF"kllGikl’j’d4x’,= _51.’-/’ (1'5)

with the conditions

G-9'=0 for x<z’,
G*+7'=0 for x>«

Here the symbol 8" denotes in obvious fashion a
product of a Kronecker delta with a delta function,
while “<” is an abbreviation for “lies to the past of”
and “>” is an abbreviation for “lies to the future of,”
well-defined motions of “past” and “future” being
assumed to exist in the space time of parameters x4,
Typically these notions will be based on a metric of
signature —--+-+ which may or may not, itself,
belong to the category of “field variables.” In this case
there will generally be a region of overlap of the
domains past and future which may be removed by
relabeling it the ‘‘present.” Both G~/ and G+¥
vanish simultaneously in this region. In a nonrelativistic
theory the “present” may collapse to a hypersurface.

It is to be noted that F;, unlike an ordinary finite
matrix, does not possess a unique inverse; both G—¥'
and G*i¥, as well as linear combinations of the two,
are its “inverses.” This fact is a direct consequence of
the existence of well behaved solutions to Eq. (1.1),
which may always be added to any “inverse.”” On the

(1.6)

71In theories for which Fourier transforms may be introduced
(e.g., differential equation with constant coefficients), the existence
of well-behaved solutions is revealed in the presence of poles on
the real axis in the “energy plane.”
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other hand, it is to be recalled that although solutions
to “wave equations” [here collectively described by
Eq. (1.1)] are everywhere bounded (which is what is
meant by “well-behaved’’) they do not vanish in
remote regions of space-time sufficiently rapidly to be
normalizable. For if they did, then F;; would possess
true null eigenvectors and have no inverses at all.
Operators having the three properties enumerated
above will be called wave operators. A continuous
matrix having a single unique inverse, on the other
hand, will be called regular. The undifferentiated delta
function is the simplest example of a regular matrix.

A very important property of the Green’s functions
G*i7 is their ability, in the combination

o it it
GV'=GHi -G ,

to express Huygens principle for a disturbance ¢*:

= f dZ, f e

X(G74f¥ " =47 ¥ e G"5). (1.8)

Here the value at an arbitrary point x of a function *
satisfying Eq. (1.1) is expressed in terms of Cauchy data,®

(L.7)

on a hypersurface Z (surface element d=,) all points of
which lie in the “present” with respect to one another,
and which is customarily referred to as ‘“‘spacelike.”
The proof of Eq. (1.8) is carried out by changing the
surface integral into a volume integral with the aid of
Gauss’ theorem, and then using Eq. (1.2). For #>2
Eq. (1.8) becomes

future
Yi= f ' f at’!
z

X (GH'F i~ Bype G5, (19)
while for x<Z it becomes
z
Yi= f dt f e
X(GF jg "' — 7' FjpG%'9), (1.10)

the validity of both forms following immediately from
Egs. (1.1) and (1.5). The extension of the domains of
integration arbitrarily far into the future and past
respectively is permitted since the Green’s functions in
each case “‘cutoff”’” sharply beyond the point x. In the
case of x lying on Z, the singularities of the Green’s
functions are to be interpreted in such a way that

8 The operator fr;;» is of one differential order lower than
Fyjr. If Fig is already of the first order, then there is no distinction
between the Cauchy data ¢¢ and S fe;;'dix’. ‘
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G7'* vanishes while [/ f* j#G* "'d*" has the form of a
three-dimensional delta function.®

The function G/ is known as the propagation function
for the disturbance ¥¢ It satisfies the homogeneous
equation

f FunGF'7di%" =0, (1.11)

Because ¢* satisfies the homogeneous Eq. (1.1) and
because the Cauchy data on = may be chosen completely
arbitrarily, we may infer from Eq. (1.8) that G*/
satisfies not only Eq. (1.11) but also the equation

f FanG7¥ dbx’' = 0. (1.12)

However, since there is only one unique function with
the kinematical properties of G/ which satisfies this
equation, namely, the negative transpose of G/, we
infer from this the laws of reciprocity

i = — G
G G7',
G =GF ',

(1.13)
(1.14)

which in turn permit us to rewrite Huygens principle in
the form

¢‘=fd2,,rfd4x”
p

X(G' [ ¥ =7 o s G*"). - (1.15)
We note incidffntally., fr9m Eq. (1.14), that Fy;
possesses among its various inverses a symmetric inverse

Qi =4(GHI+G)=G7", (1.16)
as befits a symmetric (i.e., self-adjoint) operator.

We end this section by recording for later use the
following identities: '

GHii' =0(x',x)G7, (1.17)
G—¥'=—0(x,x" )G, (1.18)
where
1 when 2>«
0(x,x)= ' (1.19)
0 when x<u«’.
Also,
GtisGt+b i — G—iaG—b' i’
= (Gtio—G—ia)GH' 7 G—ia(GHY' ' — GV’ ')
=[0(x,2")—0(x,2) JGI*G>7". (1.20)

¢ This rule requires modification when F;;- is of the first differen-
tial order. The two terms in the integrand of Eq. (1.8) then make
identical contributions, and both share the delta-function property
when z lies on 2.
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2. DEFINITION OF THE POISSON BRACKET

Consider now a field ¢* whose dynamical properties
are specified by an action functional S. The field
equations which it satisfies may be written in the form

S.:=0, (2.1)

where the comma followed by an index is used to denote
the variational derivative with respect to ¢* at a point.
Our approach to the Poisson bracket for this field will
be based on canonical transformation theory and on
the recognition of the action as the generator of a
finite canonical transformation. Here it is necessary
to keep in mind that the functional S appearing in
Eq. (2.1) is the over-all space-time action which
connects dynamical variables in the remote past with
those in the remote future. We may make this explicit
by writing

S=SWo|¥-x), (2.2)

where the symbols y,, and ¥_, designate any set of
field quantities associated with the remote future and
past respectively which suffice, without redundancy,
to determine the “history” of the field. In this section
we assume that such quantities exist without, however,
at any time having need either to find them explicitly
or to make other than symbolic use of them.

In order to describe the dynamics of the field ¢* in
canonical terms it is necessary to “break into” the
action at an arbitrary spacelike hypersurface =, and
to express it as the sum of two parts:

S=S(¢w l"’E)“"S(‘llzl\b’—w)

Here the symbol s designates the same quantities as
Yo and Y_,, taken, however, on the hypersurface 2
and determined by the stationary action principle (2.1)
from the boundary conditions expressed by ¥, and
Y- 1t is to be noted that in a generally covariant
theory involving the gravitational field, the hyper-
surface £ must itself be specified in terms of field
variables, since the definition of spacelike then depends
on the metric.

We now invoke the fundamental theorem of canonical
transformation theory:

(2.3)

The variation in the functional form of the generator of
a finite canonical transformation, due to independent
infinilesimal canonical transformations of ils argu-
ments, is equal to the difference between the correspond-
ing independent infinitesimal generators.’

Nearly every important theorem in classical mechanics
is a corollary of this one. In order to -apply it to the
characterization of the Poisson bracket we consider the
following change in the action:

S — S+eB, (2.4)

10 A general proof of this theoren will be found in a previous
pa?er by the author: Bryce S. DeWitt, Revs. Modern Phys. 29,
377 (1957).
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where e is an infinitesimal constant and B is an arbitrary
functional of the field variables which is invariant
under all infinite dimensional transformation groups
possessed by the theory. This change, which may be
regarded as a comparison between two slightly different
physical systems, will induce a change in the dynamical
variables, the precise nature of which depends upon the
boundary conditions selected. For example, we may
adopt advanced boundary conditions in which the
dynamical states of the two systems are taken to
coincide in the remote future. Since both the original
and modified actions, when broken up as in Eq. (2.3),
generate canonical transformations describing the un-
folding-in-time of their respective ‘“‘histories,” it is
evident that the dynamical variables of the two systems
on any space-like hypersurface = are themselves
connected by an infinitesimal canonical transformation.
Denoting the generator of this transformation by
st(Z) and the corresponding variation in any Z2-
associated field quantity fs by &tfz, we have, by

definition,
tfz=—(fz57(2)), (2.5)

the parentheses denoting the Poisson bracket. From the
fundamental theorem, on the other hand, we have

8S (V| ¥z) =5t () —s*(2), (2.6)

where the symbol § is used to denote the change in the
functional form. Since the advanced boundary condi-
tions assure us that st(w)=0, it therefore follows that

8 fr= (f2,85 (Y |¥)). 2.7)

For retarded boundary conditions, described by
variations 6~ and generators s(Z), with s—(— «)=0,
the corresponding equations are

58(1/’2“{’—%):5_(2)—5—(_ ®© )7
o fr=— (f2,5~(2))= - (f2,55(¢2‘¢—w))~

Under the variations §% associated with advanced or
retarded boundary conditions, the segments S (Y. |¢¥z)
and S(YslY_.) of the over-all action suffer two inde-
pendent changes: (1) a change § in value due to the
changing values of their arguments, and (2) the change
3 in functional form. The change 6 is determined simply
by inserting the new field y+8%/* into the old action.
The fact that the new field does not satisfy the field
equations of the original system is unimportant.
Because of the stationary action principle only the
variations in the arguments at the endpoints contribute.
The change §, on the other hand, is determined by the
replacement (2.4):

85 =eB=5S (o |¥2)+8S (2| ¥s).

In evaluating this infinitesimal change it suffices to
use the old field ¢* in B.
Equations (2.5), (2.9), and (2.10) together yield

5.+f2—5—f2= é(fz,B). (211)

(2.8)
(2.9)

(2.10)
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Since any dynamical variable 4 may be constructed
out of hypersurface-associated variables fz, Eq. (2.11)
may immediately be generalized to

6tA—86-A=e(A,B), (2.12)

in which reference to spacelike hypersurfaces no longer
appears, Equation (2.12) expresses essentially the
content of Peierls’ definition of the Poisson bracket.?
Its utility rests on the fact that an independent evalua-
tion of the variations 6*4 is possible, as will be seen
in the next section. It is important, however, to make
two remarks about this definition. Firstly, our deriva-
tion of Eq. (2.12) is not an explicit one as was Peierls’
in which the propagation of small disturbances in a
system having a constraintless Lagrangian was studied
directly. It proceeds instead from the fundamental
theorem of canonical transformation theory, and
although the existence of canonically conjugated
variables which can be used to give the ordinary
definition of the Poisson bracket [e.g., when it first
appears in Eq. (2.5)] is, of course, assumed, it never
makes explicit use of them. In a theory possessing an
infinite dimensional Invariance group, in fact, proper
canonical variables are usually extremely difficult to
find. Nevertheless, in attempts to quantize such
theories a great deal of effort has been devoted to the
search for precisely these variables. On the other hand,
these variables are rarely, if ever, of immediate physical
interest, and therefore it is desirable to have a theory
which is more accessible to direct physical intuition.
The second remark is this: By focusing our attention
on variables of immediate physical interest we restrict
ourselves, in the definition of Poisson brackets, to
physically measurable quantities, which are of necessity
group invariants. But this is quite satisfactory from
the point of view of Eq. (2.12) since the variations
d£A in any group invariant 4 will be well defined even
though the variations §%)¢ in the field variables them-
selves are not because of the possibility of performing
infinitesimal group transformations. We see that with
this restriction Eq. (2.12) in effect amounts to a
generalization of Peierls’ definition. By working directly
with Green’s functions, in fact, we shall demonstrate
in the next section that the Poisson bracket (2.12)
satisfies all the usual indentities and that it can therefore
be disconnected completely from its canonical origins.

3. THE INVARIANCE GROUP AND ITS EFFECT ON
THE DETAILS OF THE THEORY

The representation of the infinite-dimensional in-
variance group of the theory, which is provided by the
field variables ¢, may be expressed in the infinitesimal
form

byim f RipoEvdhe, 3.1)

where the functions §£L are infinitesimal group param-
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eters. Here, capital Latin indices from the middle of
the alphabet (L,M,N,---) will be associated with the
symbol x, while those from the beginning of the alphabet
(4,B,C,- - +) will be associated with the symbol z.

The representation (3.1) need not be linear in ¢* but
may be quite general. The only restriction on it is the
identity

f(RiA,,'rR’"BI—RiB',j'Rj’A)d4xl

=fRiLICL'ABId4x,, (3.2)

where the ¢L4p are the structure constants of the
group, which in turn satisfy the identity

f(CLAM'CM'BICH+CLB'M'6M'C"A

+elernme™ ap)die’'=0. (3.3)

Typically Rir. will be a differential operator; that is, a
linear combination of the delta function and its deriva-
tives, with coefficients involving the field variables and
their derivatives. It is characteristic of the field theories
which are of interest in physics that a homogeneous
quadratic function of this operator, of the form

FAB/Efd‘led‘ixlg{j'R‘ARj’B', (3'4)

where g, is a symmetric regular continuous matrix
having a unique inverse gi¥, can always be found which
is a wave operator possessing unique Green’s functions
G*4B’ The choice of g;; is not necessarily unique, but
having made it we stick to it, and use it together with
its inverse to raise and lower the field indices 7, j/,
.o, etc.

It is evident from Eq. (3.1) that a group invariant 4
is characterized by the condition

f A Ridéx=0. (3.5)

The action S, in particular, will satisfy this condition
independently of the field equations. This means that
the field equations themselves are not.all independent
of one another but are subject to constraints. It is
assumed, of course, that the invariance group alone
gives rise to the totality of conditions (3.5). That no
further conditions can be obtained by taking variational
derivatives is assured by the identity (3.2).

By taking the variational derivative of Eq. (3.5),
with 4 replaced by S, it is easy to show that under the
group transformation (3.1) the field equations (2.1)
are replaced by linear combination of themselves.

BRYCE S.
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We have
85, i= fS_,-j'&[/"'d‘*x'

[ [ e

="f d""f @428, 7R 4 BE2. (3.6)

In this way we see how the invariance of the action
insures the invariance of the field equations. It will be
noted that when the field equations are satisfied the
second variational derivative of the action satisfies

fS,.',‘lelAd4x’= 0 (37)

The continuous matrix S ;; therefore possesses true null
eigenvectors and can have no inverses. For the field
theories which are of interest in physics, however, it is
always possible to find a symmetric regular continuous
matrix g48’ such that the combination

F'-J-:ES',-J':—!-fd42fd42'gABlR{ARj’B’ (3.8)

15 a proper wave operator with unique Green’s functions
G*¥', The matrix g43’ together with its inverse gsp
will be used to raise and lower the group indices
4,B, -, etc.

Let us now consider the change (2.4) in the action.
Under this change the field variables will suffer a
corresponding modification d+¢* which satisfies the
equation

0£S, = fS.ij'8i¢j'd4x'= —eB... 3.9

The é+)* are, of course, not well defined, being deter-
mined only up to a transformation of the form (3.1).
In virtue of Eq. (3.5), however, the corresponding
change in any invariant 4 is well defined. It is evident
that the general solution of Eq. (3.9) is obtained by
adding (3.1) to an arbitrary linear combination of
particular solutions determined by appropriate bound-
ary and supplementary conditions. The boundary
conditions to be adopted are already implied by the
== signs. As the supplementary condition it is con-
venient to choose

fR;Aaiup‘d4x= 0. (3 10)

If this condition is not already satisfied then it is easy
to see that it may nevertheless always be imposed by
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carrying out an infinitesimal group transformation
(3.1) with the group parameters choosen according to

o¢4= f a4 f d'g'GEAF Rty (3.11)

When the supplementary condition (3.10) is satisfied,
it follows at once from (3.8) that

f Fipbtpidia = j Spdtpidy.  (3.12)

The solution of Eq. (3.9) may, therefore, be written
immediately in the form

FHpi=e f G=i7'B, d%, (3.13)

It is important to check, however, that this solution in
fact satisfies the supplementary condition (3.10)
which was used to get it in the first place. This can be
done by first deriving an important relation between
the Green’s functions G*48" and G+, We note, using
Eqgs. (3.4), (3.7), and (3.8), that

f Ri Fpdix= f FipR;yB'dY. (3.19)
Therefore,
f d4xfd4z’FA B RSB GHY
=fd4xfd4x”R’°"AF G = —R7 4. (3.15)
But also, |
fd"z’fdﬂz”FAB:GiB’c"Rf'cl:=—RJ"A. (3.16)

Equations (3.15) and (3.16) are both wave equations
in the operator F4p-, having the same inhomogeneous
term, —R7 4. The functions satisfying these equations
have the same kinematical properties and must, there-
fore, be identical; that is,

f RAGH dty= f G=AB'R pdt.  (3.17)

On using this equation with the index 4 in the lower
position, we then have, from (3.13),

f Risd*pidie=e f i’ f 'GP R 5B, (3.18)
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which vanishes in virtue of Eq. (3.5) (with 4 replaced
by B), thus showing the complete self-consistency of
the condition (3.10).

The explicit form for the Poisson bracket (2.12) now
follows from Egs. (1.7) and (3.13). On writing

4= f A SHpidix, (3.19)

we have

(4,B)= f dix f dx'A G'B (3.20)

a result which is immediately interpretable in terms of
the mutual interference of measurements performed on
A and B! That the Poisson bracket (3.20) is unique
and independent of possible freedom of choice of the
regular matrices g;;» and g4%° follows from the unique-
ness of this mutual interference.

The infinitesimal canonical transformation §t4 —é~4
generated by the group invariant B has a special
characteristic worth noting. Since §t5;—865,:=0 it
follows that the field yi45+tyi—o)*¢ satisfies the field
equations if v does. Hence we see that group invariants
transform solutions of the field equations into other
solutions. The consequent role of group invariants as
infinitesimal generators for the group of mappings of
the set of all physically distinct solutions of the field
equations into itself guarantees that the Poisson
bracket (3.20) satisfies all of the identities usually
associated with Poisson brackets; for the Poisson
brackets may be mapped into the commutators of the
Lie ring associated with the mapping group.

These identities may also be verified directly. The
antisymmetry of the Poisson bracket follows from the
reciprocity law (1.13). The identity

(4,BC)=(4,B)C+B(4,C) (3.21)
is obvious. The verification of the Poisson-Jacobi
identity, on the other hand, requires a little computa-

11 The mutual interference is more naturally expressed in terms
of retarded Green’s functions. Denoting by 3p4 the retarded
change in A produced by the change (2.4) in the action, and by
8 ABhthe corresponding change in B with B replaced by 4 in (2.4),
we have

Spd=c| d'% | d*x'4,:G"B, j,

duB=e[ds [d/B G4, ;.
In virtue of the reciprocity law (1.14), therefore, Eq. (2.12) may
be reexpressed in the form
64B—35gA=¢(4,B),

which is the original form of Peierls’ definition. We note also that
the retarded change in 4 produced by B is equal to the advanced
change in B produced by 4, and vice versa.
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tion. By straightforward application of (3.20), we find
(4,(B,0))+(B,(C,4))+(C,(4,B)) |

= rd“xfd‘*x’fd“x"fd"z

X[4 @B i C 1 (G* "G +G7G¥")

+A4.:B i .k"(Gij’k”+Gk"aGii’)

+A4 B ;:C 1r1o(G7*G¥ i+ GoGI*")

+A4,:B ;C 3 (GoGI'¥’ (GG ,
+G¥'eGH )], (3.22)

The first three terms in the square brackets vanish
because of the reciprocity law (1.13) and the inter-
changeability of the order of variational differentiation.
In order to evaluate the fourth term it is necessary to
investigate the variational derivative of the propagation
function itself. By taking the variational derivative of
Eq. (1.5), we find

f FarGH'7 (i = — f Far oG 7dbx" | (3.23)

of which the solution, on taking into account the
kinematics of the Green’s functions and using Egs. (3.8)
and (3.17), is

GHid y= f d4s! f A4/ GEW Fyvorr (GE 7

= f a2’ f d45GEV'S gy G 7+ f @

Xfd,;zllfd,;x/l(aiible'L” aGiLuAHRj;A”

+RA"GE oo Re Y (GEY ). (3.24)

Upon insertion into (3.22) the last term of (3.24) gives’
no contribution, since the contraction of Ri4” and
‘R¥ 41 with 4 ; and B,j, etc., vanishes on account of
the invariance property of 4, B, and C as expressed
by Eq. (3.5). With use of Egs. (1.7) and (1.20),2
therefore, the expression (3.22) reduces to

f i f i’ f Iz f i f diz’ f 45" 4 B 3C S aprer

X{[6(x",z")—0(x,7") ]G GI¥G*"’
+ [a(x’z/l) —0(x",z’)]Gf’aGk""'Gc”i
+0('2")—0(2,5)I6¥ GG 7). (3.25)

12 The author is indebted to Dr. T. Imamura for pointing out the
utility of the identity (1.20) in the present connection.
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By permuting the indices @, ¥, ¢”" and, correspondingly,
the points z, 2/, 5" (which is permitted because of the
complete symmetry of S 4o in its indices) it is easy
to see that the various terms of this expression cancel
one another, thus confirming the Poisson-Jacobi
identity.

The foregoing theory of the Poisson bracket may be
regarded (particularly in its measurement-theoretical
interpretation) as a correspondence principle limit of the
quantized theory. In a more accurate treatment, in
which the Poisson bracket is viewed as an actual
commutator—which is to say, in which one is interested
in effects beyond the lowest order evaluation of the
mutual interference of two measurements—the verifica-
ton of the Poisson-Jacobi identity is not so simple, for
the reason that the propagation function is itself a
g-number in all except completely trivial linear theories,
and may stand in different orders in pairs of terms
which would otherwise cancel one another in expressions
such as (3.25). The operator properties of the propaga-
tion function indicate that the commutator form of
Eq. (3.20) should correctly be written

84 8B
[4,B]=i f dix f Qe G2 (3.26)
A 2

(We use units in which Z=¢=1.) Here the dots signify
that the propagation function is first to be inserted as a
replacement for &7 in all the places in which it occurs in
the variation 8B (assuming that 4 and B are expressible
in terms of products of ¢’s) and that the resulting
“product” is then to be inserted as a replacement for
&' in the variation 84, or, alternatively, that the
process of insertion is first performed in 84 and then in
8B.1 That the two procedures are equivalent is evident
from the familiar properties of commutator brackets
when one takes note of the fact that in computing the
commutator of two group invariants [of which the
characterization (3.5) should now be replaced by the
more rigorous form S (84/8¢%)- Riad*s=0], one may
work directly with the ¢’s out of which they are built,
proceeding as if the simple commutation rule

i 1=iG'"

were valid.!* These observations, of course, merely

(3.27)

BTf Fermi statistics are required than the y¥’s must come in
pairs in any group invariant, and 34 /8¢ should be taken as a
“right derivative’” and 8B/6y?’ as a ‘‘left derivative” with respect
to each pair. The process of insertion of the propagation function
then involves the pairing of a2 ¢ from A with a ¢ from B in an
antisymmetrized combination.

4 The anticommutator should, of course, appear here when
Fermi statistics are involved. It will be observed that this requires
the propagation function to satisfy a symmetrical reciprocity
law G%'=Gi'% in place of Eq. (1.13). This does not lead to an
inconsistency, however, because the wave operator F;;» turns out
to be antisymmetric instead of symmetric in precisely those cases
in which Fermi statistics are required. The alterations which
this requires in the results of Sec. 1 are straightforward and will
be left to the reader.
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shift the question of the consistency of the rigorous
quantum theory onto the propagation function itself
and its correct definition as an operator. We shall not,
however, pursue this problem further here.

A final remark should be made about the structure
of the group invariants, 4 and B, appearing in a
Poisson bracket. Heretofore, we have always had in
mind, for each of these quantities, some explicit
functional expression involving the y’s. Actually these
quantities are defined only modulo the field equations.
It is straightforward to show, however, that this
freedom leaves the value of the Poisson bracket
unaffected. Let us, for example, replace B by

B'=B+ f fiS iz, (3.28)

where the fi are arbitrary coefficients. [The group
invariance of the second term follows from Eq. (3.7)
together with the field equations. ] We have

(4,B))=(4 ,B)-I-fd"xfd“x'

Xfd4x"A,,'G”'S,j'k"fk”, (3.29)

in which terms in S; have been dropped after the
variational differentiations have been performed. In
virtue of Egs. (1.12), (3.8), and (3.17), however, this
becomes ‘

(4,B")=(4,B)— f o f dé’ f dix f disd

X G Rys Ry A fE”

=(4,B)— f dx f dix f iz f d'd;

X Rig G 4R A (3.30)

which reduces simply to (4,B) in view of the.invariance
condition (3.5).

4. YANG-MILLS FIELD

The invariance group of the Yang-Mills theory® is
the infinite-dimensional group which is obtained by
taking the direct product of the rotation group in
three dimensions (isospin group) with itself an infinite
number of times, once for each point of space time.
The fact that the starting group is. chosen to be the
rotation group is unimportant as far as the mathemat-
ical structure of the theory is concerned, and we shall in
this section take it to be an arbitrary finite dimensional
Lie group, with structure constants ¢“yx.

The homogeneous linear representations of the
infinite dimensional group are restricted by differen-
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tiability requirements to be in one to one correspondence
with the linear representations of the starting group.
The infinite dimensional group has, however, inhomo-
geneous linear representations which have no counter-
parts in the theory of the starting group, and which
are introduced through the notion of “invariant
differentiation.” One begins with a field, represented by
a column vector ¢, which provides an arbitrary linear
representation of the group through an infinitesimal
transformation law of the form

W-_— GL¢6£L)

where the G are matrices (infinitesimal generators)
satisfying the commutation law

[GM,GN]= GLCLMN.

One then introduces another auxiliary field A%, (the
Yang-Mills field) in terms of which the ‘“invariant
derivative” of ¢ is defined :

Y=y, +GL4 Lu‘xb-

(Here the comma followed by a Greek index denotes
ordinary differentiation with respect to a space-time
coordinate.) The group transformation law for the
field A%, is chosen in such a way as to make ¥ , have
the same transformation law as y:

=Gy .n5£L~

By making use of Eq. (4.2) together with the relation
0 ,=GrL(Y8EL) ,, it is not hard to see that 4%, must
suffer the infinitesimal transformation

8AL, = — 88 - clunAN S,

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

That Eq. (4.5) provides a new type of representation
of the group (linear inhomogeneous) may be verified
in a straightforward manner by computing the com-
mutator (3.2) of two successive infinitesimal transfor-
mations. If it were not for the presence of the inhomo-
geneous term —§£L, the transformation (4.5) would
simply be that of the so-called “adjoint representation,”
the existence of which depends on the fact that the
structure constants, when regarded as matrices in their
first and last indices, themselves satisfy the commuta-
tion law (4.2) for infinitesimal generators [cf. Eq. (3.3)].
In the case of Abelian groups, for which the structure
constants vanish, however, it is precisely the inhomo-
geneous term which renders the representation non-
trivial. It is to be noted that in all questions of group
representations we are here concerned only with the
local group in the neighborhood of the unit element.
If the starting group is compact the representation
(4.5) is actually multivalued. For, owing to the
finiteness of the group volume, any single valued
function on the group must be periodic in the group
parameters, whereas the inhomogeneous term of (4.5),
even when integrated to give the finite transformation
law, lacks this periodic property.
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Indices induced by repeated invariant differentiation
do not commute. We have, in fact,

Yr— Y= "‘GLFLMP: (4~6)
FLWEALv,u_ALn,r"‘CLMNAMp,ANy. (47)

It is easily verified that the field F%, transforms
according to the homogeneous adjoint representation.
It therefore possesses an invariant derivative defined
according to the law (4.3), which here takes the form

Fbpv.a'EFva,a"l'cLMNAMvFNMv- (4.8)

Straightforward computation shows that this invariant
derivative satisfies the identity

FLuv.v+Fva.u+FLu.vEO- (49)

Corresponding to every linear representation (4.1)
there exists another given by the law

6¢= - GL~¢6‘EL7

the tilde denoting the transpose. The field ¢ is said to
transform ‘“‘contragradiently” to the field ¢. For a
compact starting group the two representations are
always equivalent if they are real. This follows from
the fact that a real matrix representation of a compact
group is always equivalent to an orthogonal one (the
proof of which involves the classic procedure of integrat-
ing over the whole group) and the fact that for an
orthogonal representation the generators Gr are
antisymmetric. It suffices to restrict our attention here
to real representations, since a complex representation
can always be regarded as a real representation of
higher dimensionality.

It often happens that the two representations are
equivalent even when the starting group is not compact.
We shall now assume this to be the case, regardless of
the compactness or noncompactness of the starting
group. We shall also assume the equivalence to hold
for the adjoint representation. We may then write

(4.10)

—GL =vG vy, (4.11)
—'CLMN=gNJCJMKgKL, gLKgKM= 5LM, (412)

where v and (gu~) are certain nonsingular real ma-
trices.”® The matrix gy and its inverse g”¥ will be
used to raise and lower group indices; Eq. (4.12)
itself insures that this is an invariant process. The
matrix v must be either symmetric or antisymmetric
whenever the matrices Gy, are irreducible.!® This follows
from the fact that Eq. (4.11) implies

['Y_I’Y ~’GL] = 07

18 With the aid of the identity (3.3) satisfied by the structure
constants it is easy to show that one may choose gyy = —cEurcEnx
whenever the eigenvalues of the latter matrix are all different
from zero (e.g., in the case of compact semisimple groups).

! We mean irreducible by means of real matrices. They may
still be reducible to a complex form.

(4.13)
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which, combined with the fact that det (v y7)=1,
requires y'y"==+1. We may normalize y so that
det y==1.

If two fields ¥ and ¢ transform contragradiently it
is easy to see that the “scalar product” ¢y is a group
invariant. When Eq. (4.11) holds it is possible to
construct quadratic forms which are invariant, for
example ¥y, where

¥=y. (4.14)
It will be noted, however, that if vy is antisymmetric,
the quadratic form ¢y will vanish identically unless the
field ¢ satisfies Fermi statistics.

For the remainder of this section we shall consider
the case in which ¥ and gu~ are symmetric. We shall
take ¥ to be a simple scalar field of mass m in a Lorentz
invariant theory. The Lagrangian function of the
Yang-Mills theory® then takes the form

L=— %FLWFLW_ % (‘;;ﬂpu'*' mW) ’

for the combined fields ¢ and AZ.. For simplicity we
here use an imaginary fourth coordinate in a Minkowski
system and write all coordinate indices in the lower
position. The stationary action principle based on the
Lagrangian (4.15) leads to the field equations

0= 6S/6A L= "—FL;w.v+';GL¢.m (4 16)
0=4S/8=y u—m*. (4.17)

By means of these equations the field 4 £, is dynamically
coupled to the field Y. When the invariance group is
non-Abelian the field 4%, is also coupled to itself. A
remark is in order concerning the strength of this
coupling, which at first sight would seem to be fixed
since no explicit coupling constants appear in the
Lagrangian (4.15). The strength of the coupling is
actually determined by the scale chosen for the “co-
ordinate” or parameter mesh in the neighborhood of
the unit element in the abstract group space, and is
therefore completely flexible. A transformation from
one parameter system to another would cause a change
in the values of the structure constants and a rescaling
of the field 4%, and “coupling constants” would then
make an explicit appearance.

Under the change (2.4) in the action the fields 4%,
and ¢ suffer varjations §%4 L, and §*¢ satisfying

— &B/sAL,=5+(3S/54%,)
—&%+A Lv.nv+aiA Ly ™ cLﬂlI‘J'FII\(;wad:A» Mv

(4.15)

HGLGd*AM AYGLo¥Y
—§,Gré%y, (4.18)
— e8B/8§=05%(55/8%)
=2G ) SEAL+GydtAL, ,
oy —mE.  (4.19)

As supplementary condition on these variations, it is
convenient to choose

6£4%,,=0. (4.20)
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If this condition is not already satisfied, it may be
imposed by performing a group transformation for
which the parameters 8¢ satisfy'’

5£L'w—_-5:!:A LM-“' (4-21)
This equation is solved by
Ofl=— f GELydEAM ) pdts (4.22)
where the Green’s functions G+ satisfy
GiLM'.mnz —8Ly. (4-23)

When condition (4.20) is satisfied, Eqs. (4.18) and
(4.19) reduce to

6iA Lp.ww™— ZCLMNFNyvaiA Mr+‘;GLGM6:hA M‘.
G LAY~ GroHy= —edB/6AL,, (4.24)
2GL¢.u8iA Lﬂ+6:b|p.‘m— m25=b¢ =— EBB/&J/. (4.25)

These equations are solved with the aid of a set of
Green’s functions Gy, GEruyry GEparry, GFyyr which
satisfy the simultaneous equations

G:ELMM'P’ - ZCLKNFN,WGiKaM’v'+$GLGK¢GiKuM'v'

HIGI Gy w~ PG GHuarw=—Bublar,  (4.26)
G¥Epr 0= 2L kN FY G oy HIGIG G EE
HIGHGE Y y— VG Gy =0, (427)

26 10 JGE -+ Gy yu— MGE g =0, (4.28)
G 1Y, GH g+ Gy =Gy = — (5~ 1), (4.29)

These Green’s functions, in the symmetric combination
(1.16) irom which the retarded and advanced parts are
easily re-extracted, can be shown!® to have the following
explicit structure:

Gra= (4m)[grard ((x—2'))

—vrarf(— (x—2")2)], (4.30)
GL;M’ = (47r)—1EgLM’6uv6 ( (x_ x’)2)
—vruvf(— (x—a')%)], (4.31)
GLNV = (4"")—_17’LW’0(— (x" x/)z)’ (4~32)
Goatrw = — (4m) " 0ypryf(— (x—2')?), (4.33)
Gopr = (4r) " [dyyd (v~ )?)
—ugyf(— (x—a")?)].  (4.34)

Here, 6(— (x—«)?) is the step function which vanishes
outside the light cone and equals unity inside. The

17 The invariant differentiation law for the infinitesimals §£L is
determined by the fact that they may be regarded as transforming
according to the adjoint representation. This permits Eq. (4.5)
to be written in the form 84%, = —8£L.,, which illustrates a special
case of the rule that any variation in AL,, unlike A4Z, itself,
transforms according to the homogeneous adjoint representation.

18 B. S. DeWitt and R. W. Brehme, Ann. Phys. 9, 220 (1960).

161

functions gry and 8y are defined by the equations

g u(Xu— x,lt)

= (gru wt gV AX gum) (,—%',)=0, (4.35)
Byyr (%= 2u)
= (pyr w+GrALdgy) (2 —2",) =0, (4.36)
together with the boundary conditions
B]_]:lz gLm =gLy, (4.37)
lim 8yy-=unit matrix. (4.38)

z'—=z

The functions 2ra, Yrumry, Vi, Tysrs', Uy are given
by infinite series of the general form

L]

v= 3 oa(x—a')?",
na=()

(4.39)

the coefficients of which satisfy the recurrence formulas

Yo LM’+'UO LM’.p(xn—x’M) = —%gLM’.mu (44’0)
Un LM’+ (”+ 1)_17)” LM’.u(xn— x,y)
=—3n (1)1 Largw,  (441)
o LpM’v’+'vO LpM’v'.v(xv—x'a)
= —%(5pyg M.00— 2CLRNFY ,ng{l'
8 WG LGrYE M), (4.42)

Un L+ (1) 00 Luarr o (,—4's)
= _.}; —1(n+ 1)—1(7)1»—1 LuM'v 00 ZCLKNFNua'Unﬁl KvM’v'
+¢GLGK¢.UW——1 KuM’v’+\bGL‘vn—1 2. L "

—~uGrvn i yurw), (443)

Vo Luy = O) (444)

Un L;ql/’_i' (”+ 1)_17)11, Lulﬁ’.v(xa— x’!)
= _%n——l(n"}'l)—l(vn—l Lml«’.w_ZCLKNFNuwvn—l Knnﬁ’

HIG LGV 1 K HVG L0ty

—¥,Gron_1 ), (445)
v yarrw =0, (4.46)
oyt (1) 00 parrrr o (Be—%5)
= _%n_l (’ﬂ“l" 1)—1 (vn—l \&M’v’.m‘_mzvn—l My
+2GL¢.A7)”—1 LuM’y'), (447)
V0 gy 0y (Fu— ") = —§ By — mByy),  (4.48)
Vnyy ("+ 1)—1"’11 W (x,,—x’é)
= _i‘ —1(n+ 1)~1 (vn—l \M'.;m_mz'vﬂ,_l W
+ZGL¢,,,,'U”_1 me'), (44:9)
for n=1, 2, 3-... Each of these equations may be

integrated along each straight line emanating from the
point &', and all the v’s are thereby uniquely determined.
The series (4.39) is everywhere convergent provided
AL, and ¢ are bounded functions.
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The solutions of Egs. (4.24) and (4.25) may be
expressed in the form

AL, = Ef[Ginﬂl’u’ (6B/sAM,.)

+G*y (8B/8Y) Jd%’,  (4.50)

5i’¢= ef[Gi,ery' (5B/6AM’,.')
+GE 8B/8Y) Jd%,  (4.51)

from which the Poisson bracket immediately follows:

04 oB
(4,B)= f e f d“x’( Gy
sAL, sAM,,
6A 0B 64 0B
+ Gryw—+—Gymv
8AL, LV 84,
84 B
+—GW—_—). (4.52)
02 Y

In order to verify that the solution (4.50) satisfies the
supplementary condition (4.20), we must establish
some identities, analogous to Eq. (3.17), involving the
Green’s functions G*%» and G*Lyy.. By taking the
invariant divergence of Egs. (4.26) and (4.27), permut-
ing the order of invariant differentiations, making use
of Egs. (4.2), (4.16), (4.17), (4.28), and (4.29), and
taking note of the fact that cLayw is completely antisym-
metric in its indices [which follows from Eq. (4.12)7,
it is not hard to establish the following relations:

GiLI‘MW'JW"_I_J/GLGK'l’GiKuM'V’ = BLM'y’,
Gy o VGG RYGHE yy =PGLO (x— ).

(4.53)
(4.54)
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From these relations it may be inferred that
GinM’v’.u= - GiLM’.v’y

Gy = = G G,

(4.55)
(4.56)

where the G*Zy. are Green’s functions similar to the
G*Ly of Eq. (4.23) but satisfying the slightly more
complicated equation!®

G=Lypr e HYGIG Y GER yp = — 8Ly, (4.57)
On taking the invariant divergence of Eq. (4.50) we,
therefore, have

o0*AL, =

——ef[GiL r o (8B/8AM',)

+GELy J'GM (3B/o9) Jd%!,  (4.58)

which, after an integration by parts, vanishes in virtue
of the identity -

(6B/6A %) u—¥G*(8B/8§)=0 (4.59)

which is necessarily satisfied by any group invariant, as
may be readily inferred from the transformation laws
(4.1) and (4.5). Consistency is, therefore, established.

19 The reason for the difference between the two Green’s
functions here stems from the fact that the supplementary
condition (4.20) actually renders the propagation equations
(4.24) and (4.25) slightly nonself-adjoint. A less convenient choice
of supplementary condition restores the self-adjoint property.
The whole of the theory of Secs. 1 and 2 can be worked out for
nonself-adjoint wave operators, but for the sake of clarity the
author has refrained from doing this. Naturally any elements of
nonself-adjointness which are arbitrarily inserted into the theory
can have no effect on the identities satisfied by the Poisson
brackets taken between group invariants.
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The analytic #-point function in momentum space in quantum field theory is studied. Its different
boundary values for real value of the argument are determined, and a necessary and sufficient condition
for them to be obtainable from the Wightman functions is given. The conditions are relativistic covariance,
support properties in coordinate space (retardedness), two-term identities for momentum below threshold
(corresponding to spectrum conditions) and four-term identities (Steinmann relations). The first three
conditions are translatable into a statement about the domain of analyticity of the n-point function: it is
analytic in a union of various extended tubes plus the points of contact of two neighboring tubes for real

part of one momentum below threshold.

1. INTRODUCTION

HE retarded functions (the vacuum expectation
values of retarded products of field operators) in
quantum field theory are, as is well known, boundary
values of an analytic function in momentum space. In
this paper, we will attempt a systematic investigation
of this analytic function and its boundary values. Such
an investigation has also been made independently by
Ruelle,! Steinmann,? and Burgoyne.® The present work
puts emphasis on the geometrical nature of the problem
in contrast with the algebraic method of Steinmann and
Burgoyne. The method of Ruelle has some common
features with the present work but we believe that ours
is more explicit and detailed.

First we consider the analytic function in the energy
component only, and we easily obtain all its boundary
values which include all the conventional retarded and
advanced functions. These boundary values will be
called generalized retarded functions (r function).
Their number is 6, 32, 370, and 10 932 for three-, four-,
five-, and sixfold in contrast with 6, 24, 120, 720, for
the Wightman functions.

By using a generalization of the 6 function, we can
express generalized retarded functions in terms of
Wightman functions and the latter in terms of the
former in a compact manner. Furthermore, we obtain
necessary and sufficient conditions for generalized
retarded functions to be obtainable from Wightman
functions satisfying the usually considered conditions,
namely, (W1) relativistic covariance, (W2) local com-
mutativity or anticommutativity, and (W3) certain
mass spectrum conditions. The resulting conditions on
the » function are (R1) relativistic covariance, (R2)
support properties in x space (retardedness or advanced-
ness), (R3) two-term identities in momentum space for
momentum below threshold, (R4) four-term identities.

* Supported in part by the U. S. Office of Naval Research.

1 Present address: Department of Nuclear Engineering, Kyoto
University, Kyoto, Japan.

! D. Ruelle, thesis, Brussels, 1959.

2 Q. Steinmann, Helv. Phys. Acta 33, 347 (1960).

3 N. Burgoyne (private communication); also see H. Araki and
N. Burgoyne, Nuovo cimento 8, 342 (1960).

The four-term identities have first been found by
Steinmann* for the four-point function.

The aforementioned analytic function can be ex-
tended to a covariant analytic function in all energy
momentum components. The properties (R1)-(R3) are
translatable into a statement about the domain of
analyticity of this analytic function. Namely, it is
analytic in the union of various extended tubes plus
points of contact of two neighboring tubes for real
parts of one momentum below threshold. We have not
succeeded in translating (R4) into a statement about
the domain of analyticity.

The time-ordered function can also be expressed as
a boundary value of the same analytic function. The
boundary values must then be approached from a direc-
tion which depends on the value of the real part of the
momenta.

All the results are valid for arbitrary types of fields,
bosons, and fermions.

In Sec. 2 we collect our main results (theorems 1-3),
together with definitions of notations necessary for the
statement of our results. In Sec. 3, the properties of
generalized 8 functions are studied and they are applied
in Secs. 4-6 for the proof of our main results.

In Sec. 7 we make a few remarks about the class of
functions for which our results hold. If the behavior of
Wightman functions for large energy momentum is not
sufficiently good, we have been unable to obtain our
full results. As for the behavior at large coordinate
separation, the truncated Wightman functions are
expected to tend to zero in contrast to the Wightman
functions themselves. Hence the truncated functions
are used extensively in this work and their properties
are studied in Appendix B.

The spectrum condition assumed in the main text is
the existence of a single lowest positive mass. The case
of more general mass spectrum conditions is treated in
Appendix A. We obtain two-term identities for mo-
mentum below threshold and the corresponding ana-
lyticity. However, the sufficiency of this condition has

#0. Steinmann, Helv. Phys. Acta 33, 257 (1960).
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not been fully established for a general mass spectrum
condition.

In Appendix C, we collect definitions and known
results concerning convex polyhedral cones which are
extensively used in the main text.

2. NOTATIONS AND MAIN RESULTS

In this paper, we consider the quantum theory of
several covariant fields A,(x) satisfying (1) the in-
variance under the inhomogeneous Lorentz group, (2)
the local commutativity or anticommutativity, and
(3) spectrum conditions. As spectrum conditions, we
assume (3a) the existence of the vacuum (the nonde-
generate invariant state), (3b) the positiveness of
energy, and (3c) the existence of a lowest positive
mass m. In Appendix A, we treat the case where (3c)
is replaced by more complicated mass spectrum con-
ditions.

These conditions can be used in a most compact way®
for the truncated vacuum expectation values, as we
shall see in the following. The Wightman functions are
denoted by

wp(x)=0p(¥o,dp1)(Zp))* * * AP(n41) (P (n41)) ¥0), (2.1)

where P denotes the permutation of 1---(z+41), op is
the signature of the permutation of anticommuting
fields,® and

(2.2)

x= (xly' ¢ ')xﬂ+1)'

Throughout this paper we shall take x; as the argument
of the field A;. The truncated Wightman functions are
defined recursively by’
‘(‘I/o,A 11 (xil) . 'Aim(xim)‘l’o)
=[dir(wir)-++ Aim(xim) Ir
+Zo[Air(xin) -« - Jrl[diw(wiz) - Jp- -,

wpT(x)=cp[Apa)(®rm) - * - AP nry (P () Ir,

(2.3)
(2.4)

where the summation extends over all grouping of
points %1- - - %m, the A’s in each [ Jr of Eq. (2.3) are in
the same order as on the left-hand side, ¢ is the signature
of the permuation of anticommuting fields which brings
Ay -+ Ain to the order of the 4 in that term, and op
is as in Eq. (2.1). The purpose of this definition is to
subtract from the Wightman functions in a symmetric
manner the contributions from the vacuum intermediate
states.

¢ The mass spectrum condition for Wightman function is stated
in (W2”') of Appendix B. It is more complicated because of the
gzese’ince of the vacuum intermediate state. Also see discussion of

c. 7.

8 It is meant that op is the sign change which one obtains if one
changes the order of the fields from the natural order 1, 2, - - -n-+1
to (the order) P(1), P(2), - -+ P(n+1) for totally spacelike con-
figuration of x;. See Appendix B.

7R. Haag, Phys. Rev. 112, 669 (1958). See also Appendix B
for more detail. Equation (2.3) corresponds to Ursell’s expansion
in statistical mechanics. H. P. Ursell, Proc. Cambridge Phil. Soc.
23, 685 (1927).
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Because of the translational invariance of the theory,
x can be taken modulo (1,---,1). The 4xn-dimensional
vector space formed by x modulo (1,---,1) is denoted
by X.

The Fourier transform of a Wightman function is
denoted by

ni-1
(27r)"6(§q,«)zﬁp(q)=fe"“l-”)wp(x)dxl' vedxng, (2.5)

where
n4-1

(‘bx)= Z (Qi;xi),

i=1

(2.6)

and (¢s,%:) is the conventional inner product in
Minkowski space.! The 4u-dimensional vector space
formed by

= (91,' : 'yq"+1): (27)

such that 2¢g;=0 is denoted by Q. The @p(g) are func-
tions of g in Q.
The @WpT(g) are defined in a similar manner, namely,

67 (g) = f DT (2)dx, g0 (2.8)

wp () = (2m)~n f @owT(gdg, 1EX, (29)

where dx and dg are the volume elements of X and Q,
dx=dx1- - -dxn, dg=0(Zq))dg:- - -dgni1. (2.10)

In order to control the combinatorical difficulties for
large #, it is essential to introduce a compact, though
somewhat involved notation. A set of integers is

generally denoted by I, in particular the set {1, - - ,n41}
by I(n+1) and

(P(1),---P(R)}=I(P,p). 2.11)
The set (of sets) {I(P,k); k=1, - - -n} will be called 9.

We define
gD=3 g (2.12)
v&1l
Note that
Ui (n+1)1=0, ¢[I(nt+1)—I]=—q(). (2.13)

The energy momentum vectors of intermediate states

in the Wightman function wp are ¢(I), with IE gp.
The properties of wpT which follow from the assump-

tions (1)-(3) on the theory are (see Appendix B):

(W1) The wpT(x) are covariant functions of *&X.

(W2) If P’ results from P by the interchange of the
indices P(k) and P(k'l' 1), and if XP (k) — XP (k1) is
spacelike, then wpT (x)=wp T (x).

(W3) wpT(q)=0 unless ¢(I)22m, ¢*(I)>0 for all
Ic 9p.

8 The signature of the metricis (1, —1, —1, —1).



GENERALIZED FUNCTIONS IN QUANTUM FIELD THEORY

We now turn to the main subject of the paper, the
analytic function in momentum space. This function
will be defined by Eq. (2.27) or in explicitly covariant
form by Eq. (2.39). To show the equivalence of this
definition with conventional usuage, let us start from
the customary definition of a retarded function for Bose
fields:

7(x1; K20+ Xnq)
= (—1)"20(w"—2p»)) " - -0(xp ()’ — P (n41)?)
X (¥o,[- - -[[A1(21), A2y (xp(2)) L, AP o) (P (3)) ] - -
X Ap g1 (Xp i) 1¥0), (2.14)

where the summation is over all permutations P of
2, -+, n41. On expanding the multiple commutators,
this can be written as®

r(%1; %0+ Xny)

~S(=)F(=ir T T 0 sni—ze o)

P’ ()] yel

n+1
X IT 0(xp: )°— %P+ -1y 0p: ().

. ymj

(2.15)

Because the time components appear explicitly in Eq.
(2.15), we consider the #-dimensional vector space T'
formed by the time component of € X,

2= (2% + +%p11?) mod(l:--1), (2.16)

and the n-dimensional vector space S formed by the
energy component of ¢g&Q. We use the following inner
products:

n41 n+1
get= 2 qis, Sx= Y S%i (2.17)
=1 i=1
ntl
Sei= ZS,‘I.’ (218)

1=l

where *& X, ¢&Q, t€T, and s&S. The inner products
in Eq. (2.17) are Minkowski vectors while the inner
product in Eq. (2.18) is a number. The space Q is the
dual of X relative to the inner product (2.6), and S is
the dual of T relative to the inner product in Eq. (2.18).
The complex vector spaces corresponding to X, Q, T,
and S are denoted by Z, Z’, U, and V, respectively.
Equations (2.6), (2.17), and (2.18) are used also for
these spaces.

®To prove Eq. (2.15), we note that the vacuum expectation
value of the multiple commutator for each P in Eq. (2.14)
contains a fixed wp:&) in Eq. (2.15), if, and only if,

PP'(1)> PP/ (2)> - - - >PTIP(j-1),
PP (j4+1) <.« <P1P'(n4-1).
Since (j—1) 4’s always come to the left of 4,(x1), the wp:(x) in
all these terms have a common sign (—1)#~1, Summing up ¢

f(gr;c;)ions over all P satisfying the previous equation, we get Eq.
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If we define ¢(I) by

uI),=1 if vl
=0 if vefI, (3.19)

the ¢(I) can be written as ¢-£(Z). In a similar manner,

we define
(2.20)

which will be used to express x;—x; as s(ij) - . By using
the notation of Eq. (2.19), we can write the Fourier-
Laplace transform of r as

5(19),=05~—0»,

ro)=3 [dpan(o)en
X T [o-)-(DT* (221
I€4(P)

Here d¢° is defined in an analogous way to dg in Eq.
(2.10). The wp in Egs. (2.15) and (2.21) can be replaced
with the wp? as will be seen in Appendix B. Because of
(W3), 7(v,q) is analytic everywhere except at the cuts

Im v-£(I)=0, Reo-t(I) 3 {m*+[q-t()P}. (2.22)

If we fix the sign of every Im -£(I), and let Im v tend
to zero, then r(v,q) approaches to one boundary value.
Geometrically speaking, the family H,;® of hyper-
planes (in the space S of Im v) defined by

H,R={h(D):ICI(n+1)},
R(I)={s;s-t([)=0}

divides the entire space S into several convex polyhedral
cones which we shall call C;. If Imo stays in the
interior of one cone C;, then the sign of Im v-¢(I) stays
constant, while if it moves from one cone to another
the sign of some Im v-#(I) changes. Thus as Im v tends
to zero from inside each cone C;, 7(v,q) approaches to
one of its boundary values which we shall call r;(g).
The r:;(g) exhaust all boundary values of 7(v,q). In
particular, we obtain the Fourier transform of the
retarded function (2.15) as the boundary value corre-
sponding to the cone Im v-£(1) 0 for I={2}, {3}, - --
X{n+1},ie., for Imv; <0 for i=2, - - -, nt+1.
We shall use the generalized ¢ function

0(t:0)=1 if1&C
=0 if tfC

If C is a pointed convex polyhedral cone,” the Fourier-
Laplace transform of 4,

(2.23)

(2.24)

6(v; C)=fe"""0(t; C)ds, (2.25)

is a rational function of v». Its boundary value (con-
sidered as a distribution), as Im v tends to zero from
within a cone C’ of the space of Im v, is denoted by

18 For the definition, see Appendix C.
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8(s; C/C’) and its inverse Fourier transform is denoted
by 6(¢;C/C’). If C’ is the positive polar® of C, then
0(t; C/C’) is equal to 8(¢; C). Similar definitions hold for
0(s;C), 8(u;C), 8(t;C/C"),and 8(s;C/C’). The proper-
ties of these functions will be studied in Sec. 3.

As an example, let us consider the cones Cp in T
defined by

Cr={a"2p)’ 22P2°2 -~ 2 %p(ns1)®}.  (2.26)

Then Eq. (2.20), with wp replaced by wp”, can be
written as

Fr,@)=2p f dg'p ()8(v—q%; Cp) (2mi)—n.  (2.27)

We remark that although the starting Eq. (2.14)
referred to the Bose case, Eq. (2.27) is the appropriate
definition of the retarded function for an arbitrary
collection of local Bose and Fermi fields, i.e., theorems
1 and 2 following are true always.

Our first main theorem lists the necessary and suf-
ficient condition for the r; to be obtainable from the
wp? satisfying (W1)-(W3).

Theorem 1. If wp”(x) satisfies (W1)-(W3), then
r:(x) defined by

ri(x)=(—1)" 2 p8(x; Cp/CwpT(x)
satisfies

(2.28)

(Ri) 7;(x) is a covariant function of xEX.

(R2) r:(x)=0, if 2°EFC;+. (C+ is the positive polar!®
of C.)

(R3) 7i(9)=7i(g), if dim[C:NCiNA(I)]=n—1" and
g(I)2<m?.

(R4) 7oy (#) =7 (%) =7y (0)+7__(x)=0, if
dim[C,+NC-NCNC__NADNEI') ] =n—2,2
o'l #Zempty, C,o CCLH(D) ] NCLHI) ]

(o,0’=—+ or —).

Conversely, if r;(x) satisfies (R1)-(R4), then wp”(x),
defined by

@7 (g)= ()" Z:0(¢"; Ci/Cr)7i(g),
satisfies (W1)-(W3), and the original ;(x) is given by
Eq. (2.28) in terms of this wp”.

Remarks. (1) Note that the conditions (R1), (R2),
and (R3) in this theorem are almost dual to the condi-

tions (W1), (W3), and (W2). In fact, (W2) can be
rewritten in our notation as (W2') WpT (x)=Wp/ T (x), if

(2.29)

"1 To be precise, we have to specify the class of distributions to
which wp(x) and 7:(x) belong. The point is that a product like
6(x; Cp/Ci)wp(x) or 8(g; Ci/Cp)ri(g) has to be well defined and
the integral over dg® or da® has to be convergent. In this paper
we do not attempt any thorough discussion of this point, although
we shall make a few remarks in Sec. 7. See also footnote 16.

12 This means C; and C; are neighboring cones with their common
(n—1)-facet lying on 4 (I). The cones in (R4) will be explained.
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dim[CpNCpNk(j)]=n—1® and if [s(z)-x]<0,
where %(ij) is the hyperplane orthogonal to s(if).

(2) The support condition in x space, (R2), expresses
the retardedness in certain variables. Namely, if we
denote the 1-facets® of C; by C(s?}), then (R2) is
equivalent to (R2') 7,(x)=0, unless s}-2EV, (the
future light cone) for all A. Actually, 7; has in general
more retardedness than (R2’), which, however, invari-
ably contains alternative statements. This retardedness
is, of course, implied by (R1)-(R4), but is not immedi-
ately apparent.'4

(3) The condition (R4) has been first noted by Stein-
mann® for the four-point function (z=3). The inter-
section of two (n—1)-planes® £(I) and A(I') (I21')
is a (n—2)-plane.’® This intersection is not contained
in any other A(I'’), if, and only if, &7 and Z=I’ has
nonempty intersection for any combination of the signs
where we have denoted I(n+1)—1 by —I. If this is
the case, the (n—2)-plane A(I)NA(I') is divided into
several polyhedral convex cones by A(I")(I"=1,1")
and corresponding to each of these cones, there are
exactly four cones C; which have that cone asa (n—2)-
facet!® and which are on different sides of (z— 1)-planes
h(I) and k(I'). The condition (R4) gives a linear
relation among the corresponding four r; which are
denoted by 7., (o, 6'=+4 or —). :

Our second main task is to convert conditions (R1)-
(R4) on r; to a condition on the domain of analyticity
of the analytic function in p space. We have succeeded
in this only for (R1)-(R3).

To state our result, we need further definitions. We
define open convex cones V.2 in Q by

Vie={g; ¢ t(DEV,, IEF},

where V. is the interior of the future light cone and 9;
is the set of ICI(n+1) such that C[{(Z)], IE€ d, con-
stitute the one-facets of C;t. [The k(I), IE 4, are
boundary planes of C;.] If C; and C; are neighboring
cones across the (n—1)-plane 2(/,), namely,

dim[CNC;NEI o) ]=n—1,
the interior of the set (V;2N\V,9) is denoted by S9(if):

Se(i)={q; q-tIs)=0, ¢q-t(HEV, for IEY; or §;
and I#1o}. (2.31)

The tube T'(V;®) is the subset of Z’ defined by
T(Ve)={rcZ;Imec V..

The extended tube 77(V.9) is the union of images of
T(V?) under all complex proper Lorentz transforma-

(2.30)

(2.32)

18 Cp and Cp- are neighboring cones with their common (n—1)-
facet lying on %(%).

i For example, take 712(x:- - -x4) for the fourfold case. (See
H. Araki and N. Burgoyne, footnote 3.) This vanishes unless x;
is advanced over «; and x. and x. is advanced over eithker x; or x4.
(R2) says that it vanishes unless (x1—x3), (¥1—=x4), and
f(x1+x2-x3—x4)67+. Of course, the latter and (R4) imply the
ormer.
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tions. The corresponding definitions in X are

VpX={a&X;s[P(k), P(k+1)]-2EV_,
k=1, o),

S(Pk)={xCX; s[P(k), P(k+1)]-2=0,
s[P(m), P(m+1)]-2aEV_. for m=Ek} (2.34)

T(VeX)={3EZ; Tm sE V%), (2.35)

If the two cones Cp and Cp are neighboring, namely, if
P(i)=P'(i) for ik, k+1 and P(k)=P' (k+1),
P(k+1)=P'(k), then

S(P,k)=S(P',k)=the interior of VpX\VrX. (2.36)

We are now ready to state our second main theorem.
Theorem 2. The F:(g) satisfying (R1)-(R3) are
boundary values of one analytic function #({) as ¢
tends to ¢ from inside the tube T'(V;9). #(¢) is analytic
in the union of T7(V,9) for all possible ¢ and in the sets

2(i,m)={$€Z"; ImES5(f), [Reg - (D) P <m?} (2.37)

for all 1, 7, I, such that C; and C; is neighboring across
k(I). ({) is analytic at a real point {=g, if all g(I)?
are smaller than m?. Conversely, if 7({) is analytic in
this region and has a certain boundedness property,!s
then its boundary values 7;(g) satisfy (R2) and (R3).

This will be proved in Sec. 6. For the sake of com-
parison, we mention the corresponding theorem for wp?.

Theorem 3. The wpT(x) satisfying (W1)-(W3) are
boundary values of one analytic function w7(z) as z
tends to x from inside the tube T'(VpX). w7(3) is ana-
lytic in the union of T7(VpX) for all possible P and in
the sets

Z(PR)={2EZ;Im sE85(P,k),
’ (Re s[P(k), P(E+1)]-2)2<0}, (2.38)

wT(z) is analytic at a real point z=g, if all s()-x are
spacelike. Conversely, if wT(z) is analytic in the above
region and satisfies a certain boundedness condition,
then its boundary values wp™ (x) satisfy (W2) and (W3).
Covariant formulas which express #(¢) and w(z) in
terms of boundary values of the other are given by

(2.33)

FO)=(—D" T2 f dxet€=9(20; C,, % /Im %)

Xb6(x; ADwaT(x), (2.39)
wh0)= O £5 . [[dge@20(p; Co/m )
X0[g; As%(m) JPa(q). (2.40)

Here A.X and Ag%(m) designate various regions in X
or Q where w(z) or #({) have different number of
boundary values. Namely, we divide the space X into

(lggg)ompare L. Schwartz, Medd. Lunds Mat, Sem. Suppl. 196
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several A.® according to whether each s(4j) -« is space-
or timelike and the different regions are distinguished
by subscript a. A similar definition holds for Ag®(m):

AF=(2EX;0ai)ls() x>0},  (241)
A2 (m)={g€Q; os(DL(¢- LD —m*]>0), (2.42)

where ¢, and o3 are + or —. For each region A,X
vectors [s(kl)-x] with o.(2))>0 can be either positive
or negative timelike. To distinguish such possibilities,
we use the cones C,,% in T which are defined by

Cor¥={CET; [s(&) 1o, (k) >0

for all £, I such that o,(E)>0}, (2.43)

where as v varies o,,(kl) exhaust all possibilities for con-
sistent assignments of signs to s(&l)-t. For example, if
all 0,(k)>0, then {C.} coincides with {Cr}. In
general, C,, is a union of several Cp. C3? are similarly
defined and coincides with {C;}, if og(I)>0 for all 1.
The summation over o in Eq. (2.39) extends over «
such that the C, are pointed. [In other words, if the
s(kl) for which ¢,(k7)>0 span S.] For each «, the sum-
mation over » extends over all possibilities. Similar
prescription applies for the summations in Eq. (2.40).
8(x; Co®/Im {°) is the 8(x®; C,2/C’) where (' is deter-
mined by Im {°&C’. 1t is invariant if ¥EAX and all
Im¢-t(I) are time- or lightlike. 6(¢°; Cs®/Im 2% is
similarly defined.

w,T is the wpT with P such that CpCCa*. Owing
to (W2), if x€A.%, then the wpT(x) are all equal for
different P as long as Cp stays in one C,%, 75, is the 7;
with 7 such that C.CCs.°.

Finally, vve note that the vacuum expectation value
of time ordered product, 7(x), and its Fourier transform
7(¢) can be expressed as

(%)= lim w(z), (2.44)
sz, Im sEVr{x)
7= lim i (¢) (2.45)
{—¢ Im{EVriQ
where V7 and Vr are defined by
v =VpX, if 2°"&Cp;
r(x)=Vp¥, i a’ECpr (2.46)

Ve(q)=V.e, if fEC,.

3. PROPERTIES OF GENERALIZED 6 FUNCTION

First let us consider the generalized # function defined
by Eq. (2.24) for the special case of a simplex cone C.1°
Suppose 1-facets of C and C* are #;- -, and 51+ -5
where s;-8;=8;;, [det(s;) #07]. Then we have

0 ©)=T1 6550 (3.1)
6(0; C)=in|det(t)| TT (-1 (3.2)

i=1
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Ii we define associated simplex cones ¢C by
oC=Clo1tr - *ouln), (3.3)
where the ¢; are =1, then, we have the formulas

5('0; aC)= (ﬁ 0'1')6(7) y C)a

=1

(3.4)

8(t: C/oCH = (T] 0)8(t; oC) 19

7=l

(3.5)

We note that the poles of 6(v;C) appear at v-#=0,
i=1---n and the discontinuity of 6(t; C/¢C*) appears
at 5;-¢=0,i=1---n.

We now turn to the case of general convex polyhedral
cones C.

Lemma 1. Let C be a pointed polyhedral convex
coneX® The integral in Eq. (2.25) defines an analytic
function of v in the tube 7T(C*)={v; Im v&interior of
C*} (which is nonempty). The analytic function is a
rational function with simple poles at »-t=0, for
tEF(C) (the set of all 1-facets of C).

Lemma 2. (Addition theorem.) Let C and C, be
convex polyhedral cones such that C is the union of C,
and the C, are mutually almost disjoint [C={J, Ca,
dim(C,NCs) <# for a#F]. Then

> 0(v;C)=06(v;C) iflinC=0 (3.6

=0 if linC#0 linC,=0 (3.7)

Y ub(u;CeH)=0(u;C*) ifdimCt=mn (3.8)
=0 if dim C,t=un

and dim Ct=n. (3.9)

For the proof, we first note that if »& T (C*), then
Im v-¢>0for t&C and as t — o« within C, the integrand
of Eq. (2.25) tends to zero exponentially. Hence it
defines an analytic function of v. Next, we obviously
have

6(t; C)=2_,0(t; C,) almost everywhere. (3.10)

Because C,tDOCt and Ct is nonempty, the integral
representation Eq. (2.25) can be applied to all §(v; C.)
and 8(v;C), if v€T(Ct). Hence we obtain Eq. (3.6)
from Eq. (3.10) as a relation between analytic functions.
To prove that §(v;C) is rational, we invoke the sim-
plexial decomposition of C: C={J (. We already know
that, for simplex cones C,, 6(v;C.) is rational. Hence
6(v; C) is also rational by Eq. (3.6). Moreover, because
F1(Co)CF+(C) for standard simplexial decomposition
and the latter is possible, if lin C=0,'7 we see that the
singularities of §(z; C) occur only at »-t=0, t&F,(C).

To prove Eq. (3.7), we first consider a special case

16 Note that (¢t; C/aC") is defined only almost everywhere.
Equation (3.5) should be taken in this sense. The product like
0(t)w(#) is meaningful only when w(#) belongs to a certain class of
distribution. See L. Schwartz, Seminaire Schwartz-Levy, No. 3,
Faculté des Sciences de Paris, 1956-57.

17 Compare lemma C2 in Appendix C.
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where C=UJ,C,, Co=C(o1t1" * * Cmbmslms1* * *£n), dim C,
=mn, and o;= 1. Since C, is simplex, we easily obtain
Eq. (3.7) from Eq. (3.4). By using this result, we make
generalizations in two steps. First consider the case
where C=J,C,, C,=C(ToUT,), dim C(To)=n—m,
lin C(Tu)_—‘o, Ta-= {0’1151‘ . 'Umtm}, o= :l:l and d1m Cq
=n. We make a simplexial decomposition of C(T') in
h(To): C(To)=\JsC(T5). On setting Cg,=C(TpUT.)
and Cs=J,Cgs,, and using Eq. (3.6) for C,=JsCs.
and Eq. (3.7) for Cs=J,Cs,, we have Z.0(v;C,)
=34[Z.0(v; Cs,)]=0. Finally, for the most general
case, let C=JsC,, linC=m, L(C)=k(Z)', and
E={s1---Sm}. Let Z,={o151" ' TmSm}, Co=C ) NC,
and Cae=CaC,- Since lin C,=0 by construction, we
have 6(v;C,)=Z240(v;Cas) as a result of Eq. (3.6).
Since lin C,=0 by assumption, we have 8(v;Ca)
=3,0(v; Cus). By Eq. (3.7) for the previously proved
case, we have 2f(v;C,)=0. On combining these, we
obtain Eq. (3.7) for the most general case.

Equations (3.8) and (3.9) can be proved at the same
time. [If dim C%#n, 8(u;C)=0.] First, consider a
special case where C=C,JC;, Ci=CNC(—s)*, Cq
=CNC(s)t, and s, —s&C+. The (n—1)-planes in
H, (CH)'® divide Ci+ and C.* into several convex
cones. Let this decomposition be Cit=Ct{J(U.Ca")
and Cot=C+J (IUsCs*). Since Cy* and Cs* are pointed,
we have from Eq. (3.6) 8(x;C1")=0(u;CH)+26(u;C.*)
and O(u; CoH)=0(u; CH)+20(u; Cg). Since C,/HJUCsH
is not pointed, we have from Eq. (3.7) 6(u;C*)
+28(u; Cat)+20(u; Cst)=0. Hence we obtain Egs.
(3.8) and (3.9) for this case. Next, consider the case
where C is cut into several C,. by a family of planes
h(s)*, s€So. By applying the previous result, every
time one cuts C by a k(s)*, one obtains Eq. (3.8) or
(3.9) for C=JC,. Finally, consider the most general
case C=|JCqu The (n—1) planes in JoH.—1(Ca) cut
C and C, into several convex cones. Let this decom-
position be Co=1J:Cai and C= {J 4:Cai- Then by apply-
ing the previous result for C, and C, we obtain Egs.
(3.8) and (3.9). This completes the proof of lemmas 1
and 2.

Next we investigate the residue of § at its pole. We
define

R(v;C/)=limv'-14(v'; C), v-t=0 (3.11)
R(v;C/ty+ - tn)=1lim v'- 1, R(¥"; C/t1- - " tm—),
2:4=0, i=1---m. (3.12)
Lemma 3.
R(v; C/t)=1e(C; f1)01(v; CY), (3.13)
R(v; C/ty---ty)=in|det(t)] I (Coor; fu), (3.14)

m=1

18 F,,(C) is the set of all m-facets of C and H,,(C) is the set of
dimensionality spaces of all m-facets of C:

Hn(C)={h(f); FEFA(O)}.
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where

Co=Cthty tn), Co=C, fu=Clm)+h{tr--*lm1).
e(C; f)=1if fEF(C)*E for some m
=—1if —fCF.(C) for somem,

= otherwise,

(3.15)

6, is the 6 where the space T mod k(ty) is used instead
of T and A(t))* instead of V. The volume element of
T mod %(%) in the definition of 4, is so chosen that, if
t, t'-+-t)’ span a parallelepiped of unit volume,
ty'+ - -1, span the same in T mod k{t;).

To prove Eq. (3.13), we note that R(v;C/t) is a
rational function of v in 4(#))* in V. We can calculate
R by

— 27i8(v-t)R(v; C/ty)
=lim[#{v+ie; CO)—f(v—ie; C)] (3.16)

«—0

where Im v-4,=0 and e-£,>0. From lemma 1, we have
R(v;C/t;)=0, unless t; or ~HE&F1(C). (3.17)

Suppose C(ot))SF1(C){c=+). Because of Eq. (3.17)
and the addition theorem (3.6), we can adjoint to C
or cut off from C any convex cones whose 1-facets do
not contain ==f; without changing R(v; C/t;). By this
process, we can shift all (n— 1)-facets of C not contain-
ing -£t;, to one facet f. Suppose fis and s-£>0.
On denoting

C1=C+h(t1), C,=C1nC(S)'7, C"=‘-C1nC("“S)",

we have
R(v; C/t)=R(v;C'/t1).

On the other hand, we know from Eq. (3.7) that
6(v—ioe; Cy= —B(v—iae; C").
From these we obtain
~2wid(v-ty)R(v; C/t1)
= ﬁ:flﬁa’[g(v-}—ia'e; CY+0(v—ige; C')].  (3.18)

Since R is rational function, we can easily find an open
set O (relative to A(#,)*) in domain of analyticity of R
and e satisfying e-#,>0, such that oce-+Im v&C’ and
—oe+Im v&EC"" when vE€ 0. We can use the integral
representation for both § in Eq. (3.18) for such v and ¢,
and we obtain

—2716(v-t))R(v; C/t1)=fe‘”"9(t; Cydt.

Thus Eq. (3.13) is true for v 0. Since both sides of
Eq. (3.13) are rational, it holds everywhere.
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By repeated application of Eq. (3.13), we obtain

[T 2w5(s ) IR (0; C/ty- - 1)

mes]

=i TT e(Cos/om) f e-1ds,

m=i

which implies Eq. (3.14). This completes the proof of
lemma 3.

We now discuss the boundary values of 4.

Lemma 4. The boundary value of §

8(s; C/s")= lim B(s-+iks’; C) (3.19)
e

is the same for all s’ in the interior of any one cone C’

of I'[H, +(C*)]»

This is obvious if one recalls that 8(v; C) is rational
and its poles appear only when Imv is on one of
planes in H,_,(C*)=H.(C)*.

This justifies the notation §(s;C/C’) instead of
6(s;C/s"), as long as C’ is a cone of T[H,1(C*)] or
contained in such a cone.

Lemma 5. The Fourier transform of 8(s; C/C’),

ﬂ(t;C/C")=fe‘f"'ie(s;C/C’)ds(Zvr)—” (3.20)

is a function taking integral values (almost everywhere)
and with discontinuities only at planes belonging to
H, 1(C). Furthermore,

8(t; C/CNY=0 if ECt (3.21)
8(¢; C/s"N)=0 if 1€ interior of C and s'¢ECT.  (3.22)

To prove the first part of the lemma, we note that
this is true for simplex C [cf. Eq. (3.5)]. For arbitrary
C, we see by a simplexial decomposition C=2Cl,, that
discontinuities occur on (n—1)-planes. Furthermore, if
a {(n—1)-plane hGH, 1(C), then by lemma C2, we
can make this decomposition in such a way that
h&EH, 1(C,) for any a. Hence discontinuities occur
only on planes of H,_(C).

To prove Eq. (3.21),2° we note that if #FC’* then
there is a 51&C’ such that s;-¢<0. On using a basis
S1° ¢ 8p in S,

8(2;C/C)= f e~ Zeisi-t| det(s;) | §(Zpss;5; C/C] dps.

Since 8 is analytic for Im py>0 with fixed real p;, 722,
we have Eq. (3.21) by contour deformation in the p;
integration.

BT(H) is the set of all convex polyhedral cones obtained by
division of the whole space by (n—1) planes belonging to H. See
Appendix C.

2 Another proof can be obtained by using a standard simplexial
decomposition of C: C=UC, Then 8{(t; C/C)=Z8(; Co/C).
Since Fy(Co)CF1(C) and C'ET(H1(C)L), C’ is contained in one
of oCo* [defined by Eq. (3.3)]. By Eq. (3.5), if t&&C"*DeCa,
then 8(t; Co/C)=0(t; CofaCot)=0.



170

To prove Eq. (3.22), we make a simplexial decom-
position of C+: C+=JC,*+. Obviously s'¢C.*. Since
§(v; C)==8(v; C.), because of Eq. (3.8), we have
0(¢;C/s"Y=206(t; Co/s’). If s’ happens to be on some
plane of H, 1(C.t), there is always another s’ near s’
which is not on any plane of H,_1(C.") nor in C* and
satisfies 8(¢; C/s")=8(¢;C/s"). [s'€EH,1(CY).] For
simplex C.., we see from Eq. (3.5) that 8(¢; Co/s")=0, if
tECCC, and s"'&C.t. Hence we have Eq. (3.22).

Finally we prove the following inversion formula.

Lemma 6. If dim C=#, lin C=0, and HDH,.(C*),
then

> 6(v;CNB(t; C/C=0(v; CY).
C'ETH)

(3.23)

To prove this, we first consider the case where C is
simplex. Since HC H,.1(Ct), each C'ET'(H) is con-
tained in some C,*. By lemma 4, Egs. (3.6), (3.4), and
(3.5), we obtain

2 6(0;CNe(; C/C=2L T 6(v; €805 C/CH)]
< _

¢ C'CC,*

=Z g(v;cv+)0(t; C/Cv+)
=2 6(v; CHO(t; Co)=0(v; C*).

For general C, we make a standard simplexial decom-
position C=JuCa Since H, ,(C.H)CH,1(CT), we
can use Eq. (3.23) for every C,. Hence by using Eqgs.
(3.6) and (3.8), we obtain Eq. (3.23) for the general
case.

4. NECESSITY PROOF OF THEOREM 1

To prove (R1), we rewrite definition (2.28) in a
form similar to Eq. (2.39). Namely, using the notation
(2.41)-(2.43), we see that C,,X is sum of several Cp.
Moreover, because of (W2), if x&A.%, then the wp(x)
are equal for various P, as far as Cp stays in one C,%.
Hence using Eq. (3.6), we obtain

ri(x)=(—9)"Zh(x; AX)Z8(x*; Car®/Ci)warT (x). (4.1)

8(x°; Co,X/C;) is invariant, as long as ¥&A,X because
its discontinuity occurs only at s(kZ) -x9=0 with &, I such
that [s(kl)-x]*>0; otherwise it stays constant. Since
WaT (%) is covariant because of (W1) for wp?, we have
(R1).

(R2) is an obvious consequence of Eq. (3.21).

To prove (R3), we note that the difference
6(s; Cp/C;)—8(s; Cp/C;) for neighboring C; and C; is
the boundary value of R[v;Cp/t(I)] multiplied by
=+2x18(s-£(I)) [compare Eq. (3.16)7]. Hence, because
of Eq. (3.13), only terms with those P for which
+C[¢(I)JEF1(Cp) survive and, because of the presence
of the above 6 function and (W3), wpT vanishes, if
=+q-¢(I) is one of its intermediate momentum. (Note
that [g(I)P<m?) Since +C[t(I)J&F:(Cp) implies
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that +=¢(I) is an intermediate momentum of wp7, we
have (R3).

To prove (R4), we first note that, since I(P,k),
k=1---n is totally ordered by set inclusion, if
oINo’'I’ “empty then 4q(I) and q(I’) cannot be
intermediate state for one wp? simultaneously. Thus by
lemma 4
0(x; Cp/Cye)=0(x; Cp/C_o) if =C[HI)IEF1(Cr)

6(x; Cp/Coy)=8(x;Cp/C,.) if £C[H(I")]JEF1(Cp).
Since one of these equalities is true for each Cp, we
have (R4).

5. SUFFICIENCY PROOF OF THEOREM 1

First let us show that if r; is obtained from wp” as
in Eq. (2.28), then we obtain the ws” by Eq. (2.29).
Namely, we define

BT (g/t)= (D) i 6(¢°; C/)7:(g). ($.1)
Then by substituting Eq. (2.28) into Eq. (5.1), we have

(/)= f e pT () [Z0(q; Co/0(%; o/ C ).

By Eq. (3.23) the summation within brackets is equal

to 8(¢%; Cpt/t). [Note that {C:i}=T(H.F) and

H, 2=UpH _1(CpY)DH,_1(Cr*).] We now have
w7 (g/t)=2pr6(¢"; Cr*/0)Wr" (@)

By (W2) @wpT(g)=0, if ¢° is not in the interior of Cp*.
If ¢® belongs to the interior of Cp* and t€Cp, then by
Egs. (3.22) 8(¢°; Crt/t)=0. If ¢ is in the interior of Cp+
and #&Cp, then 8(¢®; Crt/t)=0(¢"; Cst)=1. Thus we

have
@T(¢/t)y=wpT(q) if t&Cp.
We now assume (R1)-(R4) for r;(x) and define

(5.2)

T (15 X)= (— 2mi)— f ABE B u—10: Criz)  (5.3)

T =1 T(a0 g \?
wT (x/t)= kly};ﬂfa) (2+iNt; x). (5.9
We denote U,‘Hl(ci)'L=UiHn_1(C,;+) by H, E¥ and
UpH.1(Cp) by H.1¥. We easily see that H, %
CH,1F" and in fact H, 1®7 is much larger set than
H,_ 1V in general.

If we denote the cones in I'(H,—12%) by Cp,, where
Cp=J,Cpy and the w7 (x/t) with ¢ in the interior of
Cpy by wp,T(x), then by lemma 4, Wp,T(x) is inde-
pendent of the choice of ¢ in Cp,. However, it depends
on v in general.

By lemma 1, w”(u,x) has singularities for Im «&#%
CH,1®% in general. Hence, in order to be able to
define wpT from w7(u,x), we have to show that the
jump across the cut on Im #&#k for wT(u,x) vanishes,
if "€ H, 1" and ¢ H,.17. [The wT (u,x) constructed
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from 7; of the form (2.28) is regular there. ] This follows
from (R4) in the following way.
By Eq. (3.16), what we have to show is

> f R(u—a; Co/$)o[s- (u—)Jrs(x)dsd=0, (5.5)

for Im s-#=0, h(s)*E H 12" and h(s)*&H " This
is equivalent to

> 1T L(COmri fors@)=0 (5.6)

for all 53+« 54, where (Co)m=Ci+tm, frn=C(5m)+bm,
and 2n=h(s,s2* - -sm). The necessity follows from Eq.
(3.14). For the sufficiency proof, we expand the rational
function R(%;C;/s) into partial fractions first with
respect to %, (the first component of #). Each expansion
coefficient is the residue of R at the pole of that partial
fraction and is a rational function of # given by some
R(u; C/s,55). On repeating this process, we arrive at a
formula of the type®

R(w; Cofs)=const = 1L L (Chmr; fuIR ()

where fn and (C.)m_. are defined as in lemma 3, the
summation is over ss- - -5, and R (u) is a rational function
of % depending on s, s,- - -5,.. By substituting this into
Eq. (5.5) and using Eq. (5.6), we see the sufficiency of
Eq. (5.5).

Next we prove Eq. (5.6) from (R4). In Eq. (5.6), if
hn@EHA(C,), for all ¢ and for one fixed m, then all ¢
vanishes and the equation is satisfied. Hence we now
assume that A.EHn.(C;) for some 4, namely, that ki,
is a m-dimensional intersection of planes A(I1)---
10 R

We first show that there is one and only one C; for
a given om, m=1---n such that

L (Cm; fm]=0m, (5.7
where on==1. If this is true, then denoting the corre-
sponding r; by 7., we can rewrite Eq. (5.6) as
(5.8)

2 o1 roare=0.
Ole-+0n

To prove this statement, we note that each A, is
divided by planes 4(I) not containing hn into several
(closed) convex polyhedral cones, say C,™. For each
Co™, there is at least one cone C; for which
CiNkm=C,. Furthermore, each h, is divided by
kw1 into two sides: hn=hn"UhmUhls", where
+5u&hn*. For each C,™ U there are just two Cg™
containing C, % (in its boundary), one on each side
of /m—1. Hence by induction we obtain Eq. (5.8). (Note
that C.™ coincides with C;.) We also see that C,™

% We are only interested in the coefficients.

17

can be characterized by the value ox, £ <m. Hence
we use the notation C™ (ay- - -a'm).

Next let us investigate &, more closely. If I, and Iy
are proper nonempty subsets of I(n+1), and if
oola#Zop]y fOr 04, 0y=:k, then there are five mutually
exclusive possibilities: (al) I, {s=empty, (a2) I,CI;,
(@3) I,DIL, (a4) IUIL=I(n+1), or (8) ouda\osls
=nonempty for o, oy==. We now prove that there
exists integers % and A (A<k<nm) and the set
{1,™; »<m <k} satisfying the conditions:

n
ham= ﬂ k(Iv(M)))

y=]

(A1)

(A2) I, is a partial sum of I, u==p---m’ where
m<m', (A3) L,=I," and I,=1I, satisfy (al1) for
u,v<k and (al), or (B) for m=v=~k. In the latter case,
(B) holds for u=A\.

Suppose I, has been defined for m<M satisfying
(A1), (A2), and the condition (A3’): I, and I,t™
fulfit (8). Then we will construct I, which satisfy
(A1), (A2), and either (A3) or (A3'). If this can be
done, then by induction there is some M =% for which
(A3) is true for the first time or else we find mutually
disjoint 1,1 such that b=,k 1, 17]. This latter
possibility contradicts si*@EH,1%. To construct I,,
let Znsr=Fkn—aei(EI). I IDI, M we replace I by
I'=1—1,-D_After doing this replacement for each u,
I, and I,V never satisfy (a3) nor (e4). [If M=2,
(a4) may happen, but then we replace I by —I without
harming other conditions.] Now if I'CI,™-1 (which
happens only for one u), we define I, =7,M-1 {or
vEu, [MO=]MD_T' and I, =I" and they will
satisfy (A1), (A2), and (A3’). Otherwise, we define
I =T,V and I,™M=I') and they will satisfy
(A1), (A2), and (A3) or (A3).

We now claim that, for the smallest / satisfying
IODL®,

Z Ot 10n—p e=0. (5.9)

Onak+ly Tn=lsl

To prove this, we consider an inner point P of
C™™ (1. .0p2) N An_i. In the neighborhood of P, there
are no planes k(I) except those containing /.. We
define the point

P(Gn—k-i-l' .o em)=P(E,,_.k,+1’ .. e,,.,_1)+ e,,,s,,.', (5.10)

where sn.'=sm except s’n_iy1 is chosen to satisfy
§ g1 t(L,*)=0 for u#\ and §',_ 14 1Eku—1pt. Ob-
viously, P(en—tt1:* " €m)Ehm. If we choose en suc-
cessively smaller enough, and if (sign em)=om, then
P(---en) will be in the relative interior of C™ (.. .q0.
We now fix e, so that the point

P(p,p")=P(penit1***p'€nts1v+€a)  (5.11)

is in the interior of C™(,...,, for p=o. 41, and
o' =0u11. We also define C(pp)=Cy, r(pp')=rs, if
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P(pp’) is in the interior of C;. We now prove that
7,4 —7,— is constant in p. This will prove Eq. (5.9).
For this purpose, we consider the segment

L,={P(p,+1);|p] S1}and L_={P(p, —1); |p| <1}

and consider the question: Where do L, and L_. meet
the boundaries of C;? Since L; and L_ are parallel to
Snk3 1€ An_iy1, they will never meet planes containing
Ru_it1, namely, planes k() where I is any partial sum
of I,%1, On the other hand, if the e are sufficiently
small, L, are near P and will never meet with planes
not containing %, Thus, the only planes %(I) which
L meets are for I =1, 4-21,® * where the summation
is any partial sum of /,® such that I* and I,® have
the property (al). Ly and L_ may meet more than one
planes 4(I) at one time. In such a case we change the
choice of e slightly and then I,*’ will meet only one
plane at a time. Since 5,11+ ¢(Z,®)=0 for p%X, and
p=A does not appear in the summation in the definition
of I, L, and L_ meet k£(I) at the same time.

For each fixed I, we fix p* and p~ such that P(p%¢”")
is on the same side of k(I) as P(s,0’) and sufficiently
near to k(). We now prove

f(p+, +1)—T(p+, _1)=7(P_, +1)_r(p_a —‘1)7

by proving that r(p*,p")—7(p7,p") is constant in
o'(Jp' SD).

Let the segment {P(p°p'); |p'| <1} be L.,. We
investigate planes #(I") which L, meets. Since the L,’
are near P, h(I') should contain A, ;. Since L, are
parallel to s,—;1, and since s,pp1- 17, %) =0 for us£X,
I cannot be a partial sum of 7, u7\. Hence I'=I,®
+Z21,®, where summation is any partial sum of I,%®
with uw#\k. Suppose P(p°p'"’) is sufficiently near to
h(I") and on the same side of £(I") as P(p°,¢’). Then
what we would like to prove is

(ot 0" ) —r(p7,0" ) =2(pt,0" ) —r(07,0").

Because 7 and I’ satisfies (8), this is nothing but (R4).
Thus we have succeeded in proving that w7 (x; x) has
no cut across the plane Im s- =0, unless 2(s)*E H,_, V.
We now prove the properties (W1)-(W3) for »T.
First (W1) becomes obvious if we write @WpT(q) as

DpT(q)=1"Zs0( g; A (m) ]
X[2.0(¢°; Cs°/ )78, (¢) ] tECp,

where notations are as in Eq. (2.40) and the proof is
similar to that of Eq. (4.1).

To prove (W2) or equivalently (W2'), we calculate
by lemma 3 the jump of »7(u;x) across the cut

(5.12)

2 Since k(I) should contain /,_i, ¢()=0 should be derived '

from ¢[1,®]=0, u=1---k. (Compare lemma C1.) One can easily
find that 7 should contain the whole or no part of I,® for each
w#k, and I cannot contain [;® and 7,® at the same time if
they fulfill (8). Furthermore, since #(I) Tk, 141 and since
I, =I,%1 for this case, J should contain I;®. Thus we have
this result.
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Ims-#=0,

in S [ RLu—at; C./s(u) Bs () (u—9]

Xri(x)dx®, Ims(ur)-u=0. (5.13)

If +s(u») is not a 1 facet of C;, then R vanishes. If
+5(uv) is a 1 facet of C;, and if {Re s(uv) -2 2 <0, 7:(x)
vanishes because of (R2). Thus Eq. (5.13) vanishes, if
[Re s(uv) -2 <0, which proves (W2). (z°=u, z=x.)

To prove (W3), we first note that if ¢°¢FCp*, then
¢&Cpy*+ for at least one v, and, therefore, wp7(q)
=%p,T () vanishes because each 8(¢°; C;/Cp,) vanishes
as a result of Eq. (3.21). Suppose ¢*&Cpt and
(g-4(D))*<m? for at least one I€ dp. We will prove
wWpT(g)=0 for this case by using the following lemma.

Lemma 7. If [¢-t(Z)]P<m? for one I&dp and
AgQ(m) contains g, then each cone Cg,? contains points
outside of Cp*.

If this lemma is true, then for any point ¢*&Cp*
there is a point ¢¥ outside the cone Cp+ which can be
connected with ¢° by a continuous line without crossing
boundary planes of any Cg,?. For such a ¢”,

0(¢°; Cs,9/Cpy)=0(¢"; C5,%/Cpy)

by lemma 4. Since 6(¢”;Cs.%/Cpy) is a sum of
6(g”; C;/Cpy) by Eq. (3.6), and the latter vanishes,
we have @pT(q)=0.

To prove lemma 7, it suffices to prove that if
q(I)*<m? for at least one IEdJp and a polyhedral

convex cone
C= NI
reg

is contained in Cp*, then there is at least one I’€ 4 for
which ¢(I")2<m?. To prove this, we note that CCCp+
implies (lemma C1) that

X(I)t(])=I,ZE:g)\(I,I’)t(I’) for IE€ 9p, (5.14)

where A(Z) and \(1,I’) are positive integers. By com-
paring any fixed component on both sides of Eq. (5.15),
we easily see

M) <A, I). (5.15)
If g(I')*2>m? for all I'C 4, and if ¢°SC, then each
g(I'} is positive timelike and we have®

Lo(D* P 2 2NN g(I)2 ) 2 m,

which contradicts with the assumption. This completes
the proof of lemma 7.

Finally we show that wp?(x) satisfies Eq. (2.28).
Since wp? (x) =wp,T (x) for any v, we obtain, because of
Eq. (3.6),

5 8(a2; Co/C Jup™(5)= X (495 Ci/Co)i0pT ().

. B1If g is positive timelike [ (22:)2]} >= (a;2)}. This is easily seen
in the rest system of Za,.
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Substituting the definition of wp7(x) into this equation
and using Eq. (3.23), we obtain

§ 0(x"; Cp/C)wp (x)=2 8(a; Co*/Cr (x).

By using (R2) and Eq. (3.22), the term with /54
vanishes. By 8(a?; Ci*/C;)=0(x"; C;*), the remaining
term is identical with 7;(x),

6. PROOF OF THEOREM 2

The Fourier transform of r;(x),

?4(§)=fei(f'”)r,-(x)dx, 6.1)
is analytic for {ET(V9) because of (R2). Conversely,
if 7:(¢) is analyticin T(V?) and satisfy certain bounded-
ness condition, then its boundary value 7;(g) has the
property (R2). Since 7:(¢) is covariant, because of (R1),
it is analytic in the extended tube T'(V,?) by the
theorem of Hall and Wightman.?*
We shall now prove from the property (R3), that

lim 7:(f+ieg) = lim 7;(t—ieg), (6.2)
e—+0 -0

where C; and C; are neighboring across the plane (1),
$EZ(if,m) 6.3)

qEQ,[g-t(I)>0and ¢°-¢(I)>0. If this is proved, then
by the edge of wedge theorem,?® #; and ¥; are analytic
at 2(ij,m)* and identical with each other, and, there-
fore, theorem 2 is proved.

To prove Eq. (6.2), we denote the boundary values
in Eq. (6.2) by 7:(¢) and 7;({). By taking the Fourier
transform of Egs. (3.16) and (3.13), we obtain

8(x*; C/C)—0(x"; C/C;)
=ge{C; CLe(D) NO:[ (2%r; C1/Cii], (6.4)

where C;=C+h[t(I)] (as a set in T mod A[(I)]),
Cii=C:NCH{ChD=MIDT), ) is « taken
mod A[#(I)]. 61 is as described in lemma 3, and ¢ is
defined by C[#(I)]°DC:;. By using the addition theorem
of Eq. (3.6) for the left-hand side of Eq. (6.4) we easily
see

e(UCr; CLI) DL (2°)1; (UCr)1/Cis]
=Ze(Cp; CLHI) DL («%)1; (Cp)1/Cis], (6.5)

where {JCp is any partial sum of Cp and is assumed to
be a polyhedral convex cone.
On using the integral representation Eq. (6.1) for

% D. Hall and A. Wightman, Kgl. Danske Videnskab. Selskab.
Mat.-fys. Medd. 31, No. 5 (1957).

2 H. Bremmermann, R. Oehme, and J. G. Taylor, Phys. Rev.
109, 2178 (1958); J. G. Taylor, Ann. Phys. 5, 391 (1958); F. J.
Dyson, Phys. Rev. 110, 579 (1958); L. Garding and A. Beurling
(to be published).

26 Compare H. Epstein, *‘Generalization of the edge of wedge
theorem” (preprint).
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7:(¢) and 7;(¢) with {&2(ij,m), we obtain by Eq. (6.4)
7§ =70) = [0 T Cai CLUDTD

XOL(@)r; (Can)1/Cii0(x; AaX)wa ().

Since C,» is a partial sum of Cp, we can rewrite Eq. (6.6)
using Eq. (6.5) as

(6.6)

7(6)— F5(0)= f e460d3 5 0L ()1 (Ce)r/Ci]

Xe{Cp; C[HT) JywpT(x). (6.7)

We now introduce a basis {(I), #3- - ¢, in T' and make
the transformation of variables ¥ — v, through

2=tI) @+ t:Dy..
v

(y1 and y, are Minkowski vectors.) Then 6; in Eq. (6.7)
is independent of y; and if {(J)EF1(Cp), the Fourier
transform of wpT(x) in y; with fixed y;, i 22,

'wPT(P; Yo - .yn)= fei(p,yl)wPT(yl; Yo - yn)dyl

— @0 [ esl-L(g39-1:]

Xo[p—q-1(I) w7 (q)dg

vanishes for p?<m? because of (W3). On the other
hand, if ((I)EF(Cp), then €{Cp; C[t(I)]} vanishes
by the definition of Eq. (3.15) and hence we have
7i(£)=7(¢) for {EZ(ij,m).

We note that Eq. (2.39) is obtained from Eq. (6.1)
because if {&T(V;9) then Im {*&C,;. Unlike Eq. (6.1),
Eq. (2.39) holds in all T(V9).

Finally we add the proof of Eq. (2.45). By definition

(%) =Zp0(x*; Cp)wp ().
If we use 8(x°; Cp)=6(2; Cp/Cp*), we obtain

Ho)= (20" Tp f 85— g Cr/Cr*) 3 (g)dep.

We now assume that s(=¢°)&C;. If CpTOCi, the
replacement of Cp+ by C; can be done trivially. On the
other hand, if Cs+DC;, then s-#(I) <O for at least one
IE€ 9p and as a result of (W3), at v=y,

f 6(v~¢°; Cp)wr(g)dg®

will be analytic. Hence we can again replace Cp* by C;.
Thus we have the formula (2.45).



174

7. ADDITIONAL REMARKS

To make theorem 1 of Sec. 2 precise, one has to state
the class of distributions to which wp” and r; belong.®
We do not attempt to make a precise statement as to
the class of distributions for which our proof holds, but
we would like to make some remarks pertinent to this
point.

The behavior for large value of space-time coordinate
can be estimated by physical arguments and it is
expected that wp? decreases exponentially in spacelike
directions and according to a power law in timelike
directions. This behavior will be inherited by r;. Hence
the assumption that the multiplication of 7:(g) by
6(g"; Ci/t) is well defined is a reasonable one.

We have shown that wp” and wp yield the same 7.
We have also shown that we” can be obtained from #;
by an inversion formula. The reason why wp cannot be
obtained by the same inversion formula is the following.
wp will (in general) approach to nonzero values for large
separation of its coordinates because of the vacuum
intermediate state. Because of this, expressions like
0(¢°; Ci/t)wp(g) have ambiguity and, especially, the
formula (3.23) cannot be used when multiplied by
@W(g).}¢ Thus, if we substitute Eq. (2.28) with wp”
replaced by wp into Eq. (5.1), we cannot change the
order of summation over P and multiplication by
8(¢°; Ci/t), and, hence we do not get wp(x). On the
other hand, if wp” behaves as we conjectured, then we
will obtain wp” by Eq. (2.29). This is one of the reasons
for using wpT instead of wp.

We do not know much about the behavior of @r(g)
for large energy momentum. If @p(g) does not decrease
for large ¢, we have to use the subtraction method. It
seems to be a nontrivial problem to extend our results
to this case.

APPENDIX A. CASE OF MORE COMPLEX
SPECTRUM CONDITIONS
We define m(P,k) by the lowest upper bound of m
such that

(To,Ar(1) (xpry) - - * Ap iy (P (1)) (Pm— Po)

XAp i1y (Xpein) * * - APy (@P (i) Wo) (A1)
vanishes identically where P, is the projection into
states with mass below m and Py is the projection into
the vacuum ¥,. We first prove

m(PR)=m(P'k) if [(PR)=I(P k). (A2)

Suppose (A.1) vanishes identically for P and m <m(P,k).
Then (A.1) vanishes for P’ and m<m(P,k), if the
points xpy* * *xpky and Xp(re1)* - " ¥p(ny1) are spacelike
to each other within each group. We now note that (A.1)
for P’ as a distribution in the difference variables
¢;=xpr(jy— %P (j+1 is a boundary value of a function
which is analytic for Im £;,&EV_. Hence? Eq. (A.1) for
P’ also vanishes identically for m<m(P,k).

27 By the theorem of Hall and Wightman, the analytic function
in question is analytic in a Jost point [R. Jost, Helv. Phys. Acta
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Because of Eq. (A.2) we can define
m(I)=m(P,k) if I=I(P,k).

We now assume the following:

(A.3)

Assumption A. m(I) with fixed I is the same for all
n such that wp(x)50. In addition, for integers A;>0,

m[I(n+1)—IT=m(I), (A4)
ZAm(I;) 2m(I) i D)=ZAi(I5).  (AS)

Equation (A.4) is obviously true for Hermitian fields.
The idea behind Eq. (A.5) is the following. The state

A
=] II IT Ai(xps)*%o
i v=14€CI;
will have the same quantum numbers (which is asso-
ciated with fields, additive, and zero for vacuum state)?8
as the states

¥'= HA,'(x,')*‘I/o and ¥'= H A,’(x.')‘lfo.
i€l i€—1
By definition of m(I;) there is a state ¥; with mass
around m(I;) such that

(¥, TT As(x)* o) 0.
1&1;

On assuming asymptotic conditions, we write ¥; in
the form ¥ ;= F;(4)¥,. Then the state

V" =1IL,[F;(4) 1%,

will have the same quantum number as ¥ and the mass
around Z;A;m(I;). Then, assuming no accidental can-
cellation, (¥,¥’) and (¥,¥"”) will not vanish identi-
cally, and we see that Eq. (A.5) is a reasonable assump-
tion, :

We note that for n=2, Eq. (A.5) takes the form

mitm; Zmy 2 | mi—m;|, (A.6)
where (ijk) is any permutation of (123).2

As will be proved in Appendix B, wp” will satisfy
(under the assumption B)

(W3") wpT(g)=0 unless ¢-{(I)EV, and [g-¢(I)T
2>m(I)? for all IEdp.

By the same proof as for (R3), we obtain .

(R3) 7(g)=7i(¢g) if C; and C; are neighboring
across k() and if [¢-¢(D) P<m(I)2.

30, 409 (1957)], where we have proved that Eq. (A.1) vanishes.
Hence it vanishes identically. We could use also edge of wedge
theorem (instead of Jost points), taking 0 as the analytic function
approaching the same boundary value from the other side.

28 For multiplicative quantum numbers of the form (—1)*, one
can take # mod 2.

#» We thank Professor A. S. Wightman for an illuminating ex-
planation of the relevance of Eq. (A.6) for the sufficiency of the
condition of the type (R3).
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We also obtain the analyticity of 7({) at

25 (m(D})={EZ"; Im {E€S(37),
[Re g-t(D)<m(I)?}. (A7)

The sufficiency of (R3’) for (W3’) will be established in
the same way as in Sec. 5, if the following is true
(compare lemma 7).

(M1) If [g-¢t(I)P<m(I)? for at least one I& 9p and
Ag?({m(I)}) contains g, then each cone Cg,? contains
points outside of Cp*, where

Agf({m(I)})={4€Q; os(D)([g-1(1) I
—m(I)®)>0}. (A.8)
This lemma follows from Eq. (A.S) in the same way

as the proof of lemma 7, if the following statement is
true:

(M2) The A(I) in Eq. (5.13) can be taken as 1.
Namely, if

C= (N Cx(I"YJ]+ and CCCp,
Ir'ed

=Y MIIVI) for IEdp,
I'ed

then
(A.9)

where A(I,I') is an integer.

We have been unable to prove this for general #, but
for n <4 (n=4 corresponds to the five-point function)
(M2) can be verified easily.

Summing up we have the following theorem:

Theorem A. If wp? satisfies (W1), (W2), and (W3’),
then 7, satisfies (R1), (R2), and (R3’), and (R4). The
converse is true, if (M1) holds (which is the case for
n<4). #(¢) is analytic in the union of extended tubes
T'(V9) and at the points of Z(i7; {m(I)}).

APPENDIX B. TRUNCATED VACUUM
EXPECTATION VALUES

First we prove a lemma which will be used in later
discussion. Let B(xy- + -x,) and C(y;: - *ym) be products
of fields Bi(x:) and C;(y;), respectively. If the theory
satisfies (2) in Sec. 2, B(x1- - -%s) and C(y1- - - ym) either
commute or anticommute if all the x;—y; are spacelike.

Lemma B. If B(xi---x,) and C(yi---ym) anti-
commute for spacelike x;—y;, then the vacuum expec-
tation value of either B(#:- - - x) or C(y1- - * ¥m) vanishes
identically ¥

For the proof, by theorem 3 of our previous paper®
which has been proved there under the assumption of

% We assume (1), (2), (3a), (3b), and (3¢) for the theory. How-
ever, we do not make assumptions about the connection between
commutation relation among different fields and the type of fields.
See H. Araki, J. Math. Phys. (to be published).

8L H, Araki, Ann. Phys. 11, 260 (1960). Theorem 3 in that
paper is expressed in terms of w”. However, the properties used
for wT in the proof are the covariance and the existence of lowest
positive mass in that intermediate state where U (a,1) is inserted.
(¥0,BU (\a,1)C¥y) — (¥o,B¥) (¥o,C¥o) clearly has these proper-
ties.
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(1), (3a), and (3b) [but not (2)] we have
Jim (¥o,BU (Aa,1)C¥o) = (¥o,B¥0) (¥0,C¥o),

)\h_l;n (‘IIO’CU ( - )\d, 1)3‘1’0) = (‘I’U:B\IIO) (‘I’o,C\I’o),

where U(\a,1) is the unitary operator for the trans-
lation by Mg, and a is any spacelike vector. If B and C
anticommute for spacelike x;—y;, then for sufficiently
large A

(Wo,BU (Na)C¥o) = — (Yo, CU(—Na) B¥y).

Hence we have
(\I’-C;B‘IIU) . (\I'O)C‘IIO) =0. (B-l)

We now consider the truncated vacuum expectation
values defined recursively by Eq. (2.3). We note that,
although the definition of sign ¢ of each term in Eq.
(2.3) refers to the order of the factors in that term, o
is actually independent of their order or else that term
vanishes identically due to lemma B.

We define

w(i1~ . 'ik)= (‘I’U,A il(xi1) Ry’ | t'k(xik)‘I’o)O'ir b ('ik), (B.Z)
l:’l:l‘ . 'ik]T=[A il(xt') .. -Aqk(xik)]w(il- . 'I,k) (BS)

a(41- - +4) is the sign which one obtains if one commutes
fields from the natural order to the order 7;-- -4y for
totally spacelike configuration of x;. op of Eq. (2.1) is
o[P(1)---P(n+1)].

The definition of Eq. (2.3) now becomes

w(i1~ . 'im)=[’i1' . 'im:|T+EGUG|:'i1' . ']T[ik' . .]T. .,
(B.4)

where the order of the ¢ in [ Jr is as in w, and the
summation is over all groupings G of 41- - *im. 0'¢ is

0'G=0"a'('i1' "'im)d(’f:r . )a'(zk . ) .

=0(i1- gy oline - Yalipe )+ (B.5)

In this form we see that ¢ ¢ depends only on the grouping
and not on the order of ¢;---im on w. Note that, by
lemma B, o(s1-:+,ix -, -+) is independent of the
order of the groups (z1-::), (44++-), -+, unless that
term vanishes identically.

The spectrum condition of Appendix A can be written
as (W3") @(i1 -+ -4m)=0 unless q(i1- - -in) E V5,

q(‘il' . “ik)2 Zm(il- . 'ik)2
for all £ <m or q(i1- - -1x)=0 for some &k < m,

B+ im) =01+ im)o(ir- - 58)0 Gogr- - ~im)
X W61+ i) W(iagas + im) i q(G1- - -42)=0.

The notations are

Blir- - im)= f expi[2(gos)]
Xw(i1 + tm)d%ir- - - d%im, (B.6)

g3y m)=gir++ - - +qinm. (B.7)
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Note that @ contains & function, in contrast to our
former definition of @p.
We now strengthen assumption A a little.
Assumption B. If ((I)=2,);i(I;) for integers A;>0,

m(I) KEAm'(I;) unless m'(I;)=0 for all 7,

Smingm(L,) if m'(I;)=0 for all j, (B.8)
where
m ({41 -im))=m({i1 - -im}) I Wl m)=0
=0 otherwise. (B.9)

The idea behind this assumption is the same as for
assumption A.

We now prove the following theorem.

Theorem B. If w(i:- - -in) satisfies conditions (W1),

(W2), and (W3"), then (i1- - -im)r satisfies (W1), (W2),

and (W3'). The converse is also true. (We make the
assumption B.)

For the proof, the equivalence of (W1) for w(:- - -im)
and [41- - im |7 is obvious, because the defining equation
has a unique solution in both directions. In addition,
because (W2) is the requirement of symmetry in ¢ and
7, when x;—x; is spacelike, and because Eq. (B.4) is a
completely symmetric definition, the equivalence of
(W2) for w(i1- - +im) and [41- - “im Jr 1S also obvious. (It
is important here that ¢¢ is independent of the order
of 41« tm.)

We now prove the equivalence of (W3"’) and (W3’).
First suppose g(i1- - -45)> <m(41- - -4;)% Then by assump-
tion B, for any grouping of ;- --4;, either there is a
group for which ¢(ix- -+ )2<m'(ix+ - -)? or else g(iz- - -)?
<m(iy- - -)? for all groups. From this we easily see that
(W3’) implies (W3"’). To prove the converse, we define

(il' g 'i,,.)o=r7(i1' . 'im) (‘I’O,A il(xil)(l—Po)' o

X (1 —‘Po)A :m(xtm)‘l’o) (BlO)

In the same way as in our previous paper, we can
derive

(i - indr= (i1 - in)o— 3 alir- - Jr- -,

con

(B.11)

where the summation is over all connected groupings.®
We can now apply the previous argument to Eq. (B.11)
and ~asily see that (W3") implies (W3).

Finally we prove that r; defined from wp” and wp
are the same. We show that the term from the summa-
tion over G in Eq. (2.3) cancels out in Eq. (2.28).
Consider one fixed grouping (i1---ix), (Ji-**J1), = .
We note that there are several wp which contribute to
the same term of the form (xir- - - xip) 7 (%1 - %) - -

2 H. Araki¥; see Eqs. (2.11)-(2.16).

3 If each group of a grouping G occupies consecutive positions
in (41- - -4,), then G is called a division of (41 - -4.). If a grouping
is a subgrouping of a proper division, then it is called a discon-
nected grouping. Otherwise, a grouping is called a connected
grouping. Thus for a connected grouping, numbers in one group
are interlocked in (4- - -7,), with those in another group.
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The union of the Cp for such P is the cone
Ce={IET, biy 2 - 2 tis, tiv 2z - thl,' -}

This cone is obviously not pointed. Since o¢ is inde-
pendent of P, we see from Eq. (3.7) that the contribu-
tions from various P cancels out.

APPENDIX C. CONVEX POLYHEDRAL CONES#*

Consider a real #-dimensional vector space 7" and its
dual S. A k-dimensional linear subspace is called k-plane.
The linear subspace generated by a subset 7' is denoted
by k(T). For example,

Wl L)) = {ép,-z,-; p: real).

The orthogonal compliment of % is denoted by A*. (If
hET, then #*&S. If H is a family of planes 4, then H*
means the family of planes #*.) The convex polyhedral
cone generated by #i,- - - £, is denoted by

C(tl,"'tm)={§ Nitis A 20} (C.1)

=1

The positive polar C* and the negative polar C~ of a
convex cone C is defined by

Ct={s€S;s5:120,1&C},
C—={s&S;s-1<0,1=C}.

The polars of a polyhedral convex cone in T are again
polyhedral convex cones in S. The positive polar of
the positive polar is the original cone. Note that

C(tl"'tm)+={S€S;s'li 20; =1, -+, m}, (CS)
(- ~imy=C(ktr - kbw), hr=h=k*.  (C.4)

We call £(C) the dimensionality space of the cone C
and its dimension the dimension of the cone C. A poly-
hedral convex cone C has nonempty interior, if, and
only if, dim C=#x. The maximum linear subspace
contained in C is called the linearity space of C and its
dimension is called the linearity of C. [ Notation: L(C)
and lin C.] If lin C=0, C is called pointed. C is pointed,
if, and only if, there is a (z—1)-plane intersecting with
the cone C only at the origin. We have the following
relations:

h(CH=h(C)=L(C)", L(C*)=L({C)=r(C),, (C.3)
dim C+lin C*=dim C++lin C=n. (C.6)

By Eq. (C.6) C is pointed, if, and only if, C* has non-
empty interior.

An extremum subset X of C is the set such that 4,
1y=C and at+Bt:&E X for some positive @ and 8 with
a+pB=1 necessarily imply 4, £&EX. Any convex
extremum subset of C is again a polyhedral convex cone

(C.2)

3 Compare M. Gerstenhaber in Activity Analysis of Production
and Allocation, edited by T. C. Koopmans (John Wiley & Sons,
Inc., New York, 1951), Chap. 18.
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and is called &2-facet where % is itsdimension. If dim C=#,
the (n—1)facets of C form the boundary of C. If
lin C=0, the 1-facets of C generate C. If k41<dim C,
a k-facet F is a k-facet of some (k+1)-facet G and the
intersection of such G is F. If f* is a k-facet of C*, f is
called k-corner of C. One-facet is sometimes called
extreme half-line and 1-corner is sometimes called sup-
porting half-space. We denote the set of all k-facets of
C by Fi(C), the set of all 2(f) with fin Fi(C) by H:(C),
and the set of all £-corners by Fi*(C).

The sum C+C' is the set of all sums ¢+ for t&C
and /&C’. It is again a polyhedral convex cone. Note
that C(T\JT2)=C(T1)+C(T2) where T; are subsets
of T. The intersection C(C’ is also a polyhedral convex
cone. The C’s form a lattice with the operations 4 and
M. C*’s form its dual. Namely,

(CINC2)+C3= (C1+C3)N(Co+Cs),
(C1HC)NCs= (C:NC3)+(CNCs),
(C+CY =CHNC™*, (CNC)=CHC*. (C8)

[Note that C can be replaced by # because of Eq.
(C.4).] The set of —¢ for all ¢=C is denoted by —C.

If every element s of a set = is expressible as a positive
linear combination s=2A{(»)s(») (\(v) 20) of elements
s(») of a subset Z’, then Z’ is called a positive basis of Z.
If every s in 2 is expressible as s= £ZA (»)s(v) A (v) 2 0),
then 2’ is called a ¢ basis of Z. A ¢ basis of Z which does
not contain any sub-¢ basis is called ¢ minimal. If C(Z)
for a finite set T is pointed, 2 has a unique ¢ minimal
positive basis. If a finite set 2 is ¢ minimal, C(Z) is
pointed and F1[C(Z)] consists of C(s), sE€Z.

We now state a lemma which is equivalent to the
statement (C*)*=C.

Lemma CI1. If 54,20, -+ 5420 imply 5420,
then =2 ,\; with some nonnegative \,.

Given a family of (n—1) planes, H= {h(s)*; s&Z}.
If £(Z) is the total space S, then the planes in H will
divide the entire space T into several pointed polyhedral
convex cones with nonempty interior. We denote the
set of all these convex cones by T'(H). Let

Zo={=s;s&Z}

and =, be distinct ¢-minimal ¢ basis of Zo. Then
P(H)Y={C(Z,)*}. If we denote the set of k-planes
generated by a subset of £ by IIx(Z), then Hi[C(Z.)]
Cli(Z) and H(C)CIL—x(Z)* for any CET(H).

(C.7)
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A cone C(t1---t,) with dimension # and linearity O
is called a simplex cone. Its polar is also a simplex cone.
If si-t;=38,; then C(ti---1n)T=C(s1- - -5,). Any poly-
hedral convex cone with dimension # can be decomposed
into a union of almost disjoint simplex cones C.,.

C=U.C,, Cu:simplex, dim C,NCs<nforapB. (C.9)

If F1(C.)CF1(C) for all e, this decomposition is called
a standard simplexial decomposition. We now prove
the following lemma :

Lemma C2. If dimC=# and linC=0, C has a
standard simplexial decomposition. Furthermore, for
any given plane % not belonging to H,_1(C), there is a
standard simplexical decomposition (C.9) for which
héEH ,_1(C,) for any a.

For the proof of the first half, take any 1-facet f;
and consider all polyhedral convex cones C, generated
by fi and any (n—1)-facet f.—i* not containing fi.
We easily see that C=JC,, dim (C,NCs) <z for a =8,
and F1(C,)CFy(C). Hence by induction on the number
of 1-facets, we get the first hali. Moreover, we get the
second half by always taking a 1 facet f; not containing
the given plane 4. Note that if fyCk and if there is only
one facet not containing fi, then any standard simplexial
decomposition after that stage will have the property that
k€& H ., 1(C.). Note also that if there is only one (z—1)-
facet not containing f; for every 1 facet fi, then the
cone is simplex.

Note added in proof. The definition (2.30) of V€
should be replaced by

V.2=C(V,®interior of C,)

where Q is considered as a direct product of a Min-
kowski space and S. A similar definition can be given
for V»% but is equivalent to Eq. (2.33). The author is
indebted to Dr. O. Steinmann for pointing out the
unfitness of (2.30) for the proof of analyticity in T(V,€)
in Sec. 6.
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Although the radial Green’s function for the Schrodinger equation in a Coulomb field can be obtained
in the usual way in terms of the two linearly independent solutions to the radial equation for a particular
angular momentum state, the sum over angular momentum states does not seem to have been carried out.
In this note this sum is carried out and a “closed form’’ obtained in the form of a double integral. The result
is believed to be useful for perturbation calculations where the “intermediate states” involve many angular

momentum states.

HE nonrelativistic radial wave equation for a
Coulomb potential, corresponding to angular
momentum state /, is of the form

a2 +1
= (x)+[ 23 10+1)

X x?

]u (x)=0.

We will first consider solutions to the radial equation
in this simple form, so that the formulas will look
more transparent. The transformations which bring this
to the more familiar form of the Schrédinger equation
will be introduced later at the appropriate place
[see Eq. (14)].

Consider the function #;(x), which is the radial
solution corresponding to angular momentum / and

which is finite at the origin,
xl+le—:c
#1(x) =————T (+1—ie)1F1(l+1—ie, 2042, 2x)
r(214+2)
gz 1
- f dt(l—t)"““t‘—i‘ez”‘ (1)
T(+14ie) Yo

Re(l4+1—ie)>0; Re(l+1+4ie)>0.

Trivially, this can be transformed into another
integral which contains a spherical Bessel function of
integral order:

27 ! i .
f di(1— t)ie1t=ieg==0=0 j (i)

1€ 0

Re(l4+1—i€)>0; Re(ie)>0.

#1 (%)=

(2)

On integrating by parts and using the fact that
7:(2xt) is an entire function of its argument,

()“

th(z)= +1¢€)

Re(l+1—ie)>0; Re(ie)> —1.

f di(1— t)“t—“——[te“(l—‘)];(zxt)]
©))

Thus, one sees that #;(x) as given by Eq. (3) is an
analytic function of ¢ in the complex e plane in a

* Research supported in part by the National Science Founda-
tion.

region larger than that given in Eq. (2). All we will
need is the fact that Eq. (3) will be an analytic function
of e inside the circle | e =1 for every L.

An analogous result for the second solution us(x)
which is finite at infinity does not seem to be available
in the literature, and will be derived in the following in
some detail.

Consider #;(x) defined by

xl+le: o
us () = ——no——— ds{(s— l)l—iesH-iee—z:u
T j: ( "
Re(x)>0; Re(l+1—ie)>0.
It will be shown that
%y (x)
—x(=23) p
=—— f ds(s— 1) siehy, D (fxs)g—=(e—D
21‘(-—1:&) 1
®)

Re(—1¢)>0.

The proof will be simpler if one proceeds from
Eq. (5) to Eq. (4). On using the modified Poisson’s
integral representation for 2% (ixs), us(x) as given by
Eq. (5) can be written as follows:

f ds(s—1)—ie1sttic
1

p— Lalyz(1=28p)
xfl dp(p—1)iplesi=um) ()

Fax

I(—ieT(+1)

Us (x) =

gl

—_— —_ —ie—1ol4de
r(—ie)r<z+1>f1 e

) ol ( — 1)lex(l—2paﬁ)
<[l o, @
1 aB‘ (—sz)l Beal.

On making use of the identity*
+ —_
_(__._.__)sn—l—l (S—' 1)-1.0-—1 (8)

L(—ie)

! This identity is easily proved by induction on /.

al+1

[s*(s—1)=]=

Jsttt
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one obtains

g1 ® g1
2(@) = | ds{—[s%(s— 1)1
al®) I‘(H-l—ie)j: s{as““[s (=1 ]}
at ez(l—Zaﬂ)
{tcmrmal. ©
OpL (—2x)* (228)++1 4 ) gy
xH—l @
= ——— ds(s._.l)l—i!sie
T(+1~ie)
al e:c(l-—hﬁ)
Xl——l[ 2 l]] (10
xl+lez © 6ﬂ (— x) p=1
—_—— 4. -1 l—iepltie ,~2x8 . E. D.
Titimig J, SV Q

As before, upon integrating by parts in Eq. (5) and
upon using the regularity at s=1 and boundedness at
s=o of the function %@ (ixs),

m(x)-—zr(l_u) f ds(s— )‘"s“

X[se===Dp,M(Gx5)].  (11)

Thus %z(x) as given by Eq. (11) is also an analytic
function of e for || <1 for every /, in common with
u(x) as given by Eq. (3).

We now consider the radial solutions to the Schro-
dinger equation for a Coulomb potential, corresponding
to angular momentum state /. They are usually denoted
by wi(r) and w2 (r), and are related to u;(x) and u.(x)
by?

wi(r)=Crus (%) (12)
wa(r)=Dz(), (13)
with
e=(y/p); x=—ipr; p=(28)} (14)
E( o 27
_ energy)m; 7=e mO. 15
ﬁ2 41reoﬁ2

These functions are defined in a cut # plane, the cut
being along the positive real axis. The square root is
defined to have a positive imaginary part in the cut
plane. The C; and D; are constant normalization
factors. Since the Green’s function constructed from
these functions will be independent of their normaliza-
tions, we will for simplicity set C;=D;=1.

The Green’s function is obtained, following the
usual procedure,? as

Gi(r'yr”",3)=[T (3) [0+ — 1" Ywa(r Ywr(r")
FO(r" —1Ywi(rJwa(r)],  (16)

2 See, for example, N. F. Mott and H. S. W. Massey, Theory of
Adtomzc Colllzﬁom (Clarendon Press, Oxford, England, 1949), 2nd
e

3B, Fnedman, Principles and Technigues of A pphed Mathematics
(John Wiley & Sons, Inc., New York, 1956), Chap. 3
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where
1
6(r)=  for ,
0
and the Wronskian
J(@)=wi(r)ws (r)—wa(r)w (r) =1p(2)~2L
Thus, using Egs. (3) and (11), for #’>7', one gets

17

G (rl // )
iprlrll
T(14+iT(1—i¢)

92
Xa_za—[S tet?lr == =01, (pr' )i (pr”’s) ].
S

f If” f wdS[S(l—t)]“[t(S—l)]“‘

(18)

We note that in this form the radial Green’s function
is an analytic function of € for |¢| <1 for every I. In
view of Eq. (14), this corresponds to analyticity in
the cut 3 plane outside the circle |3|=(¥?)/2, ie.,
the circle passing through the lowest eigenvalue.
However, since we know that the Green’s function is
an analytic function of 3 in the cut & plane (with the
cut along positive real axis and the square root having
a positive imaginary part in the cut plane), except for
poles along the negative real axis extending to

== (72)/27

the expression can be continued analytically inside the
circle by integrating by parts as many times as is
necessary.

We now obtain the three-dimensional Green’s
function by summing over angular momentum states,*

G(r',v",3)= (4ar'r ")—ll@z_,n (2141) Pi(cost)Gi(r" 1", 3)
19

r"'=|r"]; cos§=r"-t"/r'r".

r=|r|;
In order to interchange the order of summation and
the integrations in Gi(',#"",3) in Eq. (19), it is sufficient
to show that Z(az/azas)[]z(pr ) h® (pr”s):l converges
uniformly and absolutely in some reglon in the cut
3 plane (i.e., for Imp>0) for all s and ¢ in the ranges of
integrations. We first show the uniform and absolute
convergence for the series 2_[ 7:(pr'0)® (pr's)]. (The
series actually converges to an analytic function of 3.)
On using the familiar expansion

eiplar’’—tr!|

= 5 @+1)Pilcosd)

X ji(pr' DbV (pr”'s) - (20)
Im(p)>0,

iplst’—ir'|

4 Remembering that

St~y = (dxr'r")15(r" —+")Z (21+1) P1{cosf).
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one sees by inspection of the left-hand side that the
expansion converges in the complex cosf plane inside
an ellipse with foci at -1, and with semimajor axis

M=[(sr"y+ ("2 Q2str'r’")> 1. (21)

On the other hand, a function f(cosd,t’ s’} which
is analytic on and inside an ellipse E with foci at <1
can be expanded in a Legendre series,

f(cosb,ir’ sr'")= (2mi)—? i (2041)P;(cosh)

X [ a0y, (22)
E

which is uniformly convergent for all cosf lying in any
domain wholly inside E.5 Furthermore, the function
Qi(y), which is Legendre’s function of the second kind

E. HH. WICHMANN AND C. H. WOO

and which is single valued in the cut y plane with the
cut along real axis from —1 to -1, satisfies the
inequality®

[Q:()| < (/DA —|w[ ) Ho|¢D,  (23)

where w=9y+(y*—1)}, and the real part of the square

root is understood to have the same sign as the real

part of y. The formula (23) is valid for || >1, which is

certainly the case for y on any ellipse with foci at =-1.
If one chooses the semimajor axis to be

1
| 51(ptr YD (psr’’) | = ’ 2 f

2w
The existence of such a constant Vg, which is independ-

ent of /, ¢, and s, follows from the boundedness of

exp{ip[ (sr"")*— 2str'r"'y+ (") )4}
ip[ (sr”)2—2str'r""y+ (r") 2]

, (29)

as a function of s and ¢, (12¢20,5>1), for 3 in any
bounded region in some sector in the cut plane, and y
on the ellipse E.

Since differentiating Eq. (29) does not change either
its analytic properties or its boundedness, one concludes
that the series 3 (%/019s)[ ji(ptr' )@ (psr”)] is also
uniformly and absolutely convergent for #’>7,

1
4aT (14ie)T(1—ie)

G(r',r",3)=

92

Mg=[(r")4(8r")*]/ (26r'7"")> 1, (24)
with
("/r)>p>1, (25)
then
Me<[(@"2-+()])/ (2r'Y")<M, (26)
and
lw|=7"/(8r"). (27)
One therefore obtains, for />0,
: N2 dstrly!! )2 Y
exp{ip[ (sr'")2—2str'r"'y+ (tr')?] }ﬁQz(y)dy <N BT (28)

ip[ (sr")2—2str'r""y+ (8r')2 }

12:20, s2 1, and for 3 in some region in a sector in
the cut plane. Furthermore, because of the presence of
the term exp(ipsr'”) in front of j,(pir" )k O (psr') in
Eq. (18), the restrictions on the sector of ¥ can be
relaxed, and one actually obtains, somewhat as a
by-product, an estimate on the product of two confluent
hypergeometric functions as e function of I, viz.,

1Gi(r' 7", 8)| <Ng (', /NL(BY)/r" I (30)

This is valid for 3 in any region in the whole cut plane
outside the circle [3|= (v2)/2.

Now, interchanging the order of summation and the
integrations in G.(',r",3) of Eq. (19), and carrying
out the summation, one obtains the principal result:

foldtj:mdsfs(l*t)]i‘[t(s—1)]—i,

Xg(ts]sr”— i’ |~ exp{ip[r’ (1 —8)+r" (s— 1)+ |st’—1tr'|]}), (31)
s

where p=(23)}, and »’>#". The formula is valid in
the cut & plane (with the cut along positive real axis)
outside the circle |3|=(v?)/2, the square root being
defined to have a positive imaginary part in the cut
plane. We treated the case where the potential is
attractive. In the case the potential is repulsive, the
sign of e must be reversed.

One notes that in the limit ¢— 0, the expression

SE. W. Hobson, Spherical and Ellipsoidal Harmonics (Cam-
bridge University Press, New York, 1931), p. 62.

correctly goes over to the free-particle Green’s function,

elpl rll__rll

lim G(r',¥'",3)=— (32)
0

|t~ Y| '
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The Schrédinger equation with the complex momentum % leads to an S matrix with very simple analytical
properties. It differs from the conventional S matrix as little as one wishes on the real % axis, but it has, in
general, completely different analytical behavior outside the real axis. The present formulation removes some
of the unsatisfactory features of the conventional formalism in the sense that no redundant poles can occur
and a phase shift determines the scattering potential uniquely. The complete analytical behavior of the
S matrix, in particular at infinity, is discussed and the theory is extended to Klein-Gordon and Dirac

equations with central potential.

1. INTRODUCTION

NALYTICAL properties of the S matrix as a

function of the momentum % or energy E has
been the subject of extensive study. This is a central
problem in the S matrix approach and in the theory of
dispersion relations. The fundamental question is
whether or not the .S matrix (or the dispersion relations)
contain enough physical information that it can replace
the dynamics of the system, i.e., the Hamiltonian or
the equations of motion.

Although information about the bound states and
the decaying and capture states can be obtained from
the .S matrix, it has not been possible to answer the
above question completely in the affirmative. For
example, in the case of potential scattering the S
matrix may have redundant poles which do not corre-
spond to bound states,'! or one can give examples
showing that the phase shifts (or S matrix) do not
determine the potential uniquely.? Furthermore, the
dispersion relations for the scattering amplitude have
extra solutions which do not correspond to the solutions
of the Schrodinger equation.® In most cases even the
complete analytical properties of the .S matrix in the
whole complex plane are not known, since one can
continue .S analytically only in a region of the complex
plane.*

In this paper we give a slightly modified form of the
S matrix which has very simple analytical properties in
the whole complex & plane and avoids all the difficulties
Jjust mentioned. In particular, it has no redundant poles
and allows a unique determination of the potential.
The basic idea is to start from a Schrédinger (or Dirac)
equation with complex % (hereafter referred to as the
complex Schrodinger equation) rather than perform
an analytic continuation on the solutions of the
Schrédinger equation with real k. It is shown that in
order for the complex Schrédinger equation to have an
asymptotic solution proportional to sin[kr— (In/2)
—+n,(k)], the potential must have a cutoff at arbitrarily

1S, T. Ma, Phys. Rev. 69, 668 (1946); 71, 195 (1947).
2V. Bargmann, Revs. Modern Phys. 21, 488 (1949).
( ;?i)Gasiorowicz and H. A. Ruderman, Phys. Rev. 107, 868
1 .
4R. Jost (unpublished); J. Bowcock and D. Walecka, Nuclear
Phys. 12, 371 (1959); A. Martin, Nuovo cimento 15, 98 (1960).

large distances. This condition changes the S matrix on
the real axis extremely slightly, but it has very large
effects outside. This is a well-known situation in the
theory of analytic functions. Two functions may differ
only slightly in some domain, but may have completely
different behavior outside this domain. Alternatively,
the preceding condition may be taken as the criterion
under which all the previously mentioned simplifications
are achieved.

We discuss the complete analytical properties of the
S matrix for all /. In particular, we show that S;(k) has
an essential singularity at infinity in the lower hali-
plane, the number of poles at infinity being infinite.
Thus, it is shown that a representation of the .S matrix
as a product of its zeros and poles® is not meaningful,
and that dispersion relations for the S matrix in the
lower % plane which have been recently proposed®
are not valid.

We first discuss the analytical properties of the
functions F;(%) introduced by Levinson.” In addition,
we introduce the functions F;/*(k) (Sec. II). The
S matrix is expressed in terms of Fi(k) and F*(k). In
Sec. IIT we investigate the analytical properties of
Si(k), especially at infinity. In Sec. IV we show how the
redundant poles are eliminated; in Sec. V we discuss
the uniqueness of the potential for a given phase shift.
Finally in Sec. VI the theory is extended to the Klein-
Gordon and Dirac equations with central potential.
Most of our conclusions about finite range potentials
agree with what is known about them in special cases.®

We use units such that #2/2m=1.

II. ANALYTICAL PROPERTIES OF F.(k)

It is known that the radial Schrodinger equation

1(+1)

r

'Ol’/(f,k)-'-[kz‘— - V(T)]'Uz(f,k)=0, (1)

where we assume % to be complex from the beginning,

$N. G. van Kampen, Phys. Rev. 89, 1072 (1953); 90, 1267
(1953). N. Hu, Phys. Rev. 74, 131 (1948).

s B. W. Lee, Phys. Rev. 112, 7422 (1958).

7 N. Levinson, Kgl. Danske Videnskab. Selskab, Mat -fys. Medd.
25, No. 9 (1949).

88S. T. Ma, Phys. Rev. 71, 195 (1947).
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k=\-+ix, can be written in the form of an integral
equation’ i
Jalkr)

B+l

1 r
=T f QDY OUERE, (2)
0

with the boundary condition

0,(0,k)=0, 3)
where

gi(r§,R) = ji(kr)ni(kE) — ju(kEyni(kr), (4)

and 7:(2), n:1(2) are Riccatti Bessel functions.?
Equation (1) has, under the boundary condition in
Eq. (3) and for vanishing potential at infinity, the

asymptotic form
Ai(k)

!
e Sin[kf—?-l-m(k)], (s)

lim O (f,k) =
730

where A4;(k) and n;(k) are continuous functions of k.
Note that U;(k)=UVi(—%); hence 4,(k) is an even,
ni(%) is an odd function of % (see Appendix II).

We define a function F,(k) by’

Fu(k)=1-+ik! f VeV (k)

0 ©)
=FW(k)+iF 2 (),
where
PO (f)=1—# f VERV (mkE)de
) ™)
FO®= [ OV ik
since ’

hu(kE)= j1(kE)+ini(kE). (8)

Note that F,® (k) and F,® (k) are complex, since £ is.
Fy®(k) is an even function of k, F,®(k) is an odd
function of .

The asymptotic form of Eq. (2), compared with
Eq. (5), gives (generalizing a result of Levinson’
for /=0 to arbitrary / and complex k) the following
relations:

AP(k)=F (k) +F,*(%),
tanni(k) = ~[F,® (k)/F,® (k)]

This is shown in Appendix I. Note that for real %,
k=), m(\) are the phase shifts and we have

A1\ = (Fz()\)l,
n\)=—argF;(A\).

Thus, the function F;(k) determines the asymptotic
form of the problem completely. .S matrix, partial wave
amplitudes f;(k), and asymptotic wave function can

©)

)

° Note that these 7i(2) and i (z) differ from the spherical
Bessel functions by a factor z, also represented by the same sym-
bols; see, for example, L. Schiff, Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1955), p. 77.
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all be expressed in terms of it (see Appendix I):

h@e Vi(k)
=m[F (ke ¥+ (—1)H1F(R)e*]  (10)
D=1 [F’*(k) 1] (11)
fi( —2ik( ) b
Si(k)=(—1)'[F*(k)/Fi(k)], (12)
where
Fi*(k)=F\® (k) —iF @ (R)=[F.(k*)]*,  (13)
and
Fi*(k)=Fi(—k). (14)

First we investigate whether or not F;(%) is defined
in the whole complex plane. Considering the asymptotic
behavior of the %;(k) function, i.e.,

lim hy(kg)~e#t,  lim hp*(kE)~e—*,
Yo i

(15)

k*0

we see that the integral in the defining Eq. (6) for
F,(k) exists in the upper half-plane, but in general not
in the lower half-plane, where we will have for large £
a factor ¢~x¢ with x <0, and the integral does not exist.
Similarly, F,*(k) will exist in the lower half-plane and
not in the upper half-plane. Hence, in order for the
S matrix (12) to be defined, or equivalently, in order to
have the asymptotic solution (5) for all k, the potential
must be such that it compensates the exponential
increase in /;(k). Potentials increasing faster than the
exponential, say a Gaussian potential, satisfy this
condition. One can, however, impose much weaker
conditions, by putting a cutoff to the potential at
arbitrarily large distances. One may say, therefore,
that a cutoff in the potential at arbitrarily large
distances is a consequence of the solubility of the
complex Schrédinger equation in the form of Eq. (5).
Of course, such a cutoff does not change the physics
of the problem, but as we shall see it will simplify the
analytical properties of S;(k) and will eliminate the
unsatisfactory features of the usual formalism men-
tioned in the introduction.

We study now the analytic properties of F;(k) and
Fi*(k) in the complex % plane. Levinson” has shown
that for /=0, UVy(r,k) and hence Fo(k) are analytic in
the upper half-plane and continuous in the region
x 20 and

lim Fo(k)=1

{k]—x

in the upper half-plane, provided

fwr]V(f)]dr<oo. (16)
0
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One can generalize this theorem to arbitrary /, provided,
in addition to (16), another condition is satisfied:

fw[V(r)Idf<oo. 1n

The proof is given in Appendix II, where we also show
the following asymptotic expression:

00

0
1» F[k"‘l = e—2x£ d
Jm B = f V@, (18)

0

with Q some constant. Similarly F;*(%) is analytic and
- o
lim | Fr)—1] =— [ o v@las (18)
X— 400 | kl f

Therefore, Fi*(k) has an essential singularity at infinity
in the upper half-plane.

Using the Schwartz’ reflection theorem in the theory
of analytic continuation, it is seen that

Frr(R)=[Fu(k*)]*, and [F*(**)]*=F(k)

are also analytic in the lower-half % plane, with the
difference that now F;*(k) approaches 1 as |k| — o
and F(k) has an essential singularity at infinity as it
is seen from Egs. (18) and (18'). As a matter of fact,
from Eq. (14) we see that F;*(k) in the lower half-plane
is equal to F,(k) in the upper half-plane.

The wave function Uy(r,k) is bounded (Appendix IT);
so is the function #;(kt), except for the essential
singularity at infinity. Hence from its definition, Eq. (6),
we see that F;(k) and F;*(k) have no other singularities
in the finite % plane.

We conclude, therefore, that both F;() and F;*(k)
are analytic in the whole complex % plane with no
singularities, except the essential singularity at infinity
in the upper half plane for F*(k), and in the lower
half plane for F,(k).

III. SCATTERING MATRIX

The scattering matrix in the momentum representa-
tion is given by Eq. (12). From the symmetry of Fi(k)
and Eq. (14), we derive the unitarity and the symmetry
of the S matrix

S k)S*(k)=1, Si(k)=S*(—k). (19)
We remark at this point that the previous results will
hold even for a complex, i.e., non-Hermitian potential,
except for Eq. (14) ; hence the unitarity of the S matrix.

Being essentially the ratio of F;*(%) and Fi(k), the
scattering matrix will be analytic in the whole complex
plane with an essential singularity at infinity in the
upper half-plane, and with poles corresponding to the
zeros of Fi(k). Since Fi*(k) has no poles in the finite
k plane, there will be no other singularities.
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One may, therefore, attempt to write dispersion
relations for S;(k) in the lower half-plane,® since there
the numerator of Eq. (14) approaches 1 at infinity
and the denumerator has an essential singularity.
This would be possible, if F;(k) did not have any zeros
at infinity. We will show, however, that F,(k) will have
zeros at infinity in the lower half-plane. The proof is
very simple and utilizes the following theorem: An
analytic function comes arbitrarily close to any complex
value in every neighborhood of its essential singular-
ities.l0 Fy(k) takes the value 1 as | k| — < in the upper
half-plane; hence it must take the value zero at infinity
somewhere in the lower half-plane.

As an example, we consider the square-well potential
for which

Fo*(k) [cosak'--i(k/k') sinak’Je—i*
Fo(k) [cosak’—i(k/F) singk’Jeis* ’

with k&'= 4 (#2+V )}, where g is the range and V is the
depth of the potential. All the previous theorems can
easily be verified on this example. The zeros of F;(k),
i.e., the poles of S;(k), are given by the solutions of the
equation

So(k)= 20)

cosak’—i(k/k’) sinak’=0. (21)

On putting k=N+1ix, k’=x+1iy and expanding &'=%
4+ (1/2k)Vo+- -+, it is easy to see that Eq. (21) is
satisfied at infinity only if x is negative (lower half-
plane) and both X and x tending to infinity where X is
of the order of e~x. The number of such zeros is infinite.

We next prove quite generally that the number of
poles of the .S matrix in the lower half-plane is infinite.
To see this, we first show in Appendix III that if S:(%)
had a finite number of poles, it could be written in the
following form:

bk
Si(k)=Fei* 1
@ h—Pk,

(k— ks*) (k+ks)
B (h— ko) (B+Rs*)

where ¢ is a negative number, k, are the poles corre-
sponding to the bound states, and kg, ks* poles corre-
sponding to the decaying and capture states which are
symmetrical around the imaginary axis (see Sec. IV).
This is the expression also derived by Hu and
others® in the conventional theory which assumes, we
emphasize, a finite number of poles.

The expression (22) gives correctly the essential
singularity at infinity in the upper hali-plane, but it
contradicts our previous result that S;(k) has poles at
infinity in the lower half-plane; it does not take into
account the infinite number of poles at infinity. More-
over, for real £ and |k| — «, Eq. (22) would give
Si(k) — 4=ei** or phase shifts n;(k) — 3ck, or cross
sections which fluctuate as k=A — =, whereas Eq. (12)
gives Si(8) — (—1)%, or (k) — nwr, as | k| — © which
is correct from a physical point of view.

1 N. Ahlfors, Complex Analysis (McGraw-Hill Book Company,
Inc., New York, 1953), p. 114.
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IV. ELIMINATION OF REDUNDANT POLES

In the conventional S matrix theory, one shows that
the poles of the .§ matrix on the positive imaginary
axis correspond to the bound states, and the poles in
the lower half-plane symmetric to and off the imaginary
axis correspond to the decaying and capture states.!!
These are the “true” poles of the S matrix. In addition,
there are the so-called “redundant” poles! which do not
correspond to bound states.

It will be shown now that in our formulation the
true poles will correspond to the zeros of F;(k) and the
redundant poles to the poles of Fi*(k) in Eq. (12).
Since Fi(k) and F;*(k) are finite everywhere, no
redundant poles will occur, nor any other singularity
as found by Regge.?

To see the meaning of the zeros of F,(k), we use
Eq. (10). Clearly, if F;(k)=0 for k=1ix, x>0, we get
exponentially decreasing wave functions, i.e., true
bound states.

It remains to see the relation of the present formula-
tion with the conventional analytical continuation and
the origin of the redundant poles in the latter theory.
For this purpose we write the solution of Eq. (1) for
real £ under the boundary condition (3) in the following
form:

Vilk,r)=Ni(B)Lfi(—Fk) fr(k,r)e*
— filk) fi(—k, )e*"], (23)

where fi(k,r)e*, fi(—k, r)et*" are two independent
solutions of Eq. (1), N z(k) a normalization factor, and

fil=R)=fi(—=k,0); fu(k)=fu(R,0).

If we compare the asymptotic form of Eq. (23) with
Eq. (10) we get

Fr) SR fi(—k =)

Si(k —1)¢ — (24
(B=(=0 z(k) )ft( k)fx(k ) @4
and
R Sk
I\R,7, i = , ,
=N, (k)[fl b € Si(k )f‘(_ ] (23%)

In this form the S matrix depends on the values of the
solutions fi(k,r), fi(—k, r), both at zero and at infinity.
Since both F;* and F; approach 1 as |k]| — = for real
k, we can actually identify

Si(k,0) )= fi(—£0) . (25)

fi(ky) fi(—k,)

The poles of F*(k), which are the zeros of fi(k,»), are
redundant as one can see from Eq. (23). At such zeros,
both terms with " and ¢~**" do not vanish. This is the

Fi*(k)=

11 C, Mgller, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd.
23, No. 1 (1945).
2T, Regge, Nuovo cimento 9, 295 (1958)
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connection with the conventional formulation for real
k. The fact that the analytic continuation of Egs. (23)-
(25) does not necessarily agree with our S;(k) results
from the fact that the asymptotic form of the wave func-
tion does not have the required form for complex k. Con-
sider, for example, the following potential used by Jost!®:

V(r)=2ee/(1—ae™)?, |a|<1. (26)
Assuming a solution of the form
(k1)
folbr) _ > ake™r, a=1, (27)
fo(ky0)  »=0

we find from the Schrodinger equation c¢,(k)=2c"/
(1+24k), and from Eq. (24)
k—i[ (140)/2(1—a) ]} (—k—%i)
sy L0972 -0 - o8
(k—3i)(—k—i[(1+a)/21—a)])

The limit of Eq. (27) as r— « should be 1. This
condition is satisfied for |x|<% but not for other
complex % values, for

fo(k,f) _
f°(k: b )

hence if |x|>1, the second term cannot be neglected.
Indeed this example leads to a true pole at

k=—i[(14+a)/2(1—a)],

which is a zero of F;(£). In addition, there is a redundant
pole at

2 2
____a__e'“r+—e'-2f+ .. .) ;
142k (1+2ik)?

k=i/2,

which is a pole of Fo*(k).

We conclude, therefore, that the solution (27) does
not satisfy the asymptotic condition for complex % as
we have required from the beginning. This holds true
for all other examples in which redundant poles occur.

It has been shown by Ma# that in the example of
the exponential potential, a cutoff at arbitrary large
distances removes the redundant poles. Our treatment
shows that this procedure is quite general and gives its
foundation and justification.

We remark finally that the Heisenberg relations

f Sl(k)eik(ﬂ-r')dk.:}: lcnlze—kn(ﬂ-r’), (29)

where the summation on the right-hand side is over
bound states, which are not valid in the presence of
redundant poles, regain their validity in the present
formulation.

13 R. Jost, Helv, Phys. Acta 20, 256 (1947).
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V. UNIQUENESS OF THE SCATTERING POTENTIAL
FOR A GIVEN PHASE SHIFT

Levinson has shown that a single phase shift, n:(k),
I fixed, determines the scattering potential uniquely,
provided there are no bound states for the same / and
the potential goes sufficiently rapidly to zero at infinity.”
If, however, there are » discrete bound states for the
given [/, then examples can be constructed showing
continuous families of potentials involving # param-
eters corresponding to the same given phase shift, the
so-called ‘“phase-equivalent potentials.””2 All these
examples involve redundant.poles for the S matrix.
We will show now that with the elimination of the
redundant poles there is also a unique connection
between a phase shift 9;(k) and the scattering potential.
The point is that the solutions considered in the case
of phase equivalent potentials do not satisfy the
asymptotic condition for the solutions of the complex
Schrodinger equation, as in the example of Egs. (26)
and (27). We give now a general proof.

Let mi(k) or Si(k) be the given phase shift or .S
matrix. Then from Eqgs. (12) and (6) we get

f Vi, OV (L (— 1)Su(RVa(k) +hi* (k) 1o
1
= {1~ (—~1)S:(B]. (30)
1k

If there are two distinct potentials V(£) and V'(£)
and two solutions V;(k,£) and U/ (k,£) corresponding
to the same S matrix, we get, from Eq. (30),

IR RIAO)
’ XL (= 1) (BYa(kE)+hi*(kE) JdE=0.  (31)

Moreover, U; and U;' must be the same asymptotically
as £— o, since the phase shift is given. This means
that the integrand of Eq. (31) behaves at & —
either as (V—V")e?* or as (V—V')e?*¢ for all
complex k, depending whether x>0, or x<0. The
integrand must, however, go to zero as £ — o, if the
integral has to vanish. This is only possible for all
complex %k, if (V—V’) is identically zero (not just
approaching zero!). Then by continuity V—V' must
be zero for all £. ’

VI. RELATIVISTIC CASE

The previous discussion can be extended readily to
the relativistic case. The radial wave function for the
Klein-Gordon equation satisfies*

+1)

r2

7
eUl”(k,7')-[-[k2—V(l’,k)— ( ]‘Uz(k,f)=0, (32)

1 I.. Schiff, footnote 9, p. 321.
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where

V(rk)=[2(+1) -V () ]IV(r). (33)

Equations (2) and (6) hold exactly here too with
V(&) replaced by V() as given by Eq. (33). The
condition on the potential are here

f‘” E|V(&,k)|dE
- <

1+ (k£) 39)
f” |V (&k)]
—_—dE< 0,
o |k

By the same methods as in the nonrelativistic case,
one finds that F;(&) has the same analytical properties
as before except that it does not approach unity as
[k] — oo in the upper half-plane. Indeed for k=X —
we have the asymptotic form

_ o VEN
lim F,()=1+i f 30—,

which is clearly different from 1 since V (¢§\)/A — 2V (§)
from Eq. (33). Thus, S:(\) will not approach 1 as
A— . Hence the phase shifts approach a constant
value at high energies rather than the value #x as in
the nonrelativistic case.

For Dirac particles, the radial wave function corre-
sponding to our U,;(k,£) consists of two functions which
we denote by Mx(r) and Nk(r) satisfying the coupled
first-order equations's

[E+1—V(NIM&(r)~Nx(r)— (K/r)Nx(r)=0
[E—1—V (W) +Mx()~ (K/r)Mx(r)=0,

in the state with the quantum number X, where K?
=(j+3)*. Mg and Nk correspond to j=I—3} and
j=I+1%, respectively, and satisfy the same second

order equation.
Mg (n+{N—-[KE-1)/r*]-V (A} Mk(r)=0
Nx"(n)+{N~[K(K+1)/r]-V(An}N&(r)=0,

where V(A7) is the same as in Eq. (33). Thus we reach
the same conclusions as in the case of Klein-Gordon
equation. In particular, the phase shifts will approach
a constant value at high energies.

CONCLUSIONS

We believe that we have clarified some of the
ambiguous and unphysical features concerning the
analytical properties of the .S matrix for potential
scattering. The results we have proved are the following:

1. Inorder for the Schrodinger equation with complex
k to have asymptotic solutions for all k, the potential
must have a cutoff at arbitrary large distances, or it
must be such that the integral in Eq. (6) exists.

18 1,. Schiff, footnote 9, p. 335.
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2. This leads to an .S matrix given by

Su(k)= (—=1)'LF*(R)/Fu(k)],

which differs for real £ from the conventional .S matrix
as little as one pleases, but in general has completely
different analytical properties outside the real axis.

3. In the foregoing expression for S;(k), the functions
F*(k) and Fi(k) are analytic in the whole complex %
plane with no singularities except an essential singular-
ity at infinity in the upper half-plane, for F;*(k) and
in the lower half-plane for F;(k).

4. The S matrix so defined has no redundant poles;
all the poles of the S matrix on the positive imaginary
axis correspond to true bound states. The solutions in
the conventional S matrix theory which give rise to
redundant poles do not satisfy our boundary conditions
for the solubility of the complex Schridinger equation.

5. The number of poles of the S matrix in the lower
half-plane which correspond to decaying and capture
state is infinite. Therefore, dispersion relations for the
S matrix in the lower-half % plane do not exist.

6. With the elimination of the redundant zeros there
is a unique relationship between a phase shift and the
scattering potential. The so-called phase-equivalent
potentials do not survive.

7. The theory can be extended to the relativistic
equations with a central potential and essentially the
same results hold.

APPENDIX I. ASYMPTOTIC EXPRESSIONS

Equation (2) in the limit r — « becomes

Julkr)

kH—l

1 00
lim 0= - f QBB V (E)0i(6,k)ds
0

or using Eq. (8),

(k) 1
hm Vifr, k)—J——)——]z(kf)f ni(RE)V(O)Vi(¢,k)dE

! " RE)V
o) f FEDV (& R)dE

1
=ﬁ[].l (kr)F, O (B)+n,(kr)Fy@ ()], (1.1)

where we have used Eqs. (7). Asymptotically

Ji(kr) — sin(kr—2inl), n,(kr) — —cos(kr—3inl),

and defining
Fi O (k) F®(k)
cosni(k)= , sinm(k)=— , (1.2)
Ay(k) Ak

where

Ay(R)=[F:| WX (k)+F®* (k) Jt=[Fr(R)F:* (R) A,

A. O. BARUT AND K. H. RUEI

we get

llm Vifr, k)=££sm(kr— 1wl) cosni(k)

~+cos(kr—3xl) sinn (k) ],
which is just the Eq. (5). To show Eq. (10), we insert
in (L1)

Gi(kr) = —(eilr—4D — gmitkr—taD))
2

ny(kr) — — L (eir—rt) fg—ilkr—inD)),

and then use e#"'=4! and Eq. (6).
Equations (11) and (12) follow from the phase shifts
ni(k):
Sulk) = (= )tgins,
using Eq. (1.2).

APPENDIX II. ANALYTICAL PROPERTIES
(a) Analyticity of U,;(k,r)

Vi(k,r) depends on j,(kr) and gi(r,£,k) [Eq. (2.)].
These functions are bounded for x 20 by the following
expressions’:

fkrl'+1
(k)| <Kex'——-—, >0
e e -
! (fik)]<1(ex(r-;>(1+|kf!)’ kr| 1 -
e [BE[Y (14| k)Y
0 <¢ <,

where K is some finite constant. Let us now consider a
sequence of functions V,(™ (k,r) defined by

Ji(kr)

Vilkr)= Bl

_ f rgt(f,E,/l")V(‘c’)‘Uz"“”(k,E)dS
ko

VO (k,r)=0.
By iteration and using the inequalities (I1.1) we get

L]
(n—1)1’

r|
(I-Hkr])l’Ll

EIV(E)IdE
1+ | kg

[0 (7, f)— 0D (r )| <

- f

Thus the sequence V™ (r,k) approaches uniformly to
the limit Ui(r,k), provided L(r) is finite. This gives us
the condition (15) in the text. Each U/" (k) is
analytic, since it involves analytic functions j;(kr) and
gi(r,£,k) only; hence the limit V;(r,k) is analytic in
the upper half-plane. Furthermore, since each U, (r,k)
is an even function of %, the limit U;(r,2) is also an
even function of k.

where
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Next we show that U;(r,k) itself is bounded by
|Vu(r,®) | SQLevr| 7|7/ (14| kr|)H1],
where Q is a constant. To see this we write
Kexr| br| 1
([ )R]

(11.2)

Vulr,f) =M (r,k)

upon inserting this into Eq. (2) and using (IL.1), we
obtain

£
1+ |

Mem <t [ V()| MR,

or

wen<Kes( [ dvola)=o
0
Hence we obtain Eq. (I1.2).

(b) Analytic Properties of F;(k)

Since Vi(r,k) is analytic, we immediately see from
Eq. (6) that F;(k) is also analytic in the upper half-
plane. To show that

dim Fi()=1 for x30,

|k|—w

(IL.3)

we write from Eq. (6)
F@= 11 < K[ |0ueh) | V() k)2

- [ aeoivee
where we have set ’
Ak,&)= k|| Vi(&,k) | | u(kE)|.

Now /i(k§) is singular at £=0 for /50, and in the
neighborhood of zero

. 1-3...(21—1)
lim [ hy(kE)| =—,
, 0 | kE[*
since
g 1.3---(21—1)
lim j;(z)=———, limm(z)=——.
20 1-3-.-(2041) =0 7

One might think, therefore, that 4 (£,£) is singular for
£ — 0. However, the other term in A (k,£), |V:(%,8)]
is bounded as shown by Eq. (II.2). Hence

1-3-..(21-1) QexElgllH
,:_-l (1+lk$|)l+1

1 <
IEH_}‘} A(Ek) <

or A(0,k)=0 for all %.
If £ is finite, we can use the bound of /;(k¢), i.e.,

im {fy(kE)| =ex; (IL3)

k|0
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then

1 k +1
lim A (k,£)= lim — Q™
i e ] (1] )

A (k,£) approaches, therefore, zero as |k| — « every-
where £ 20 and is continuous. Then

o0

A(ER)|V(8)|dE=0,

0

lim |Fy(k)—1|= lim
k|

k|0

provided the second condition in the text, Eq. (17),
is satisfied. This completes the proof of Eq. (I1.3).

The asymptotic formulas (18) and (18’) follow also
from here by noting that the exponential factor in
Eq. (I1.2) in the lower half-plane is e™*". This together
with the e~xf in Eq. (I1.3) gives e2x¢,

APPENDIX III. PROOF OF EQUATION (22)

If S:(k) did have a finite number of poles, it could
always be written in the form

Su(k) =P (k)Qu(k), (IIL1)

where P;(k) contains all the zeros and poles other than
the essential singularity at infinity which is contained
in Q;(k). Then upon using the unitarity of S;(k), we
can write P;(k) as
k—k*
Py(k)= H H
a k—ky 8

(k— ks*) (k+Fs)
(k— ks) (k+Rs*)’

where %, lie on the positive imaginary axis (bound
states), kg in the lower half-plane off the imaginary
axis (decay and capture states).

Q:(%) having no zeros and poles except the essential
singularity must be of the form?!¢

Qu(k) =crei®1P,

where G,(k) can be either an integral rational or an
integral transcendental function. Since Q:(%k) has to
satisfy unitarity, Q:(#)Q:;*(k)=1, and symmetry condi-
tions Qi(k) =Q*(—k), we get

==+ 1,

and
G(k) real and odd function of k.

From Egs. (18) and (18') we know that F;*(k) in
the upper half-plane [or F;(k) in the lower half-plane]
has the asymptotic factor ei** where ¢ is a negative
number. A rational odd function Gi(k) which behaves
at infinity as ck must be itself ck. Therefore,

Qi(k)==£ei*,
and we get Eq. (22) of the text. Thus, this formula is
meaningful only for finite number of poles.

16 N. Harkness and N. Morley, Introduction to the Theory of
Analytic Functions (G. E. Stechert and Company, New York,
1924), p. 193.
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We are considering the nonrelativistic elastic and inelastic scattering of two particles with internal
degrees of freedom, or reactions giving rise to two particles. It is shown under very general conditions that
all elements of the S matrix can be simply obtained from a single analytic function of all channel momenta,
the Fredholm determinant of the scattering and reaction integral equations. Its properties are investigated
and the restrictions are established which are necessary and sufficient in order to assure that the unitarity
condition is fulfilled. The square well and a superposition of Yukawa potentials are considered as examples.

1. INTRODUCTION

OR elastic nonrelativistic scattering of particles
interacting via local potentials of various degrees
of generality, the analytic properties of the § matrix as
a function of the energy, its regularity or lack of it in
the complex plane, are by now rather well understood.!
The same cannot be said for S matrices describing
inelastic processes, i.e., reactions as well. Quite apart
from the characteristic branch points introduced by
conservation of energy between channels, there are
difficulties in continuing the known functions in terms
of which the .S matrix can be simply expressed, even to
real energies below the highest threshold.

A recent paper? by LeCouteur made an important
contribution which, it turns out, much facilitates the
understanding of such analytic properties. In the very
special case of an S-matrix meromorphic in all the
channel momenta, he showed that there exists a single
function from which all of its elements can be obtained
in a simple way. The assumption that, except for poles,
the S matrix is regular everywhere in the complex plane
of all channel momenta plays an important role in his
demonstration ;it can, therefore, not be assumed without
proof to hold in a more general case. Nor is there any in-
dication in his work of the general properties of the
function or of its connection with the interparticle forces.

In the present paper the function of LeCouteur is
exhibited under extremely general conditions. It is
shown to be the determinant of the generalized Jost
matrix function introduced earlier by the author.?
Unfortunately, that matrix function does not have
simple regularity properties unless the potential is of a
very restricted class. It is, therefore, significant that it
is also shown that its deferminant is equal to the
Fredholm determinant of the set of coupled integral
equations for the scattering wave function; under very
general conditions it is, therefore, a regular analytic
function in the whole upper half of the complex plane
of each channel momentum. Furthermore, its zeros

* Supported in part by the National Science Foundation.

t A brief summary of this paper was presented at the Tenth
Annual International Conference on High Energy Physics,
Rochester, New York, August 25-September 1, 1960.

! See, for example, the recent review article by R. G. Newton,
J. Math. Phys. 1, 319 (1960).

2 K. J. LeCouteur, Proc. Roy. Soc. (London) A256, 115 (1960).
3R. G. Newton, Ann. Phys. 4, 29 (1958).

give directly the bound states, and in somewhat more
restricted circumstances, the resonances.

The existence of a single analytic function of all
channel momenta underlying the whole scattering and
reaction matrix, diagonal elements as well as off-
diagonal, is interesting for a number of reasons. Not
only does it allow an insight into the structure of the
S matrix under much weaker assumptions than hereto-
fore necessary, but it may also be a useful tool where
the unitarity condition makes a direct use of the S
matrix cumbersome. It is true that for more than two
channels the equation for the Fredholm determinant
equivalent to unitarity appears as a rather complicated
functional restriction ; but perhaps it will be possible in
the future to understand the implications of this re-
striction a little better and thus to come to a better
understanding of the functional nature of the unitarity
condition.

In Sec. 2 we briefly review the handling of the many
channel problem introduced in footnote 3. We restrict
ourselves to discrete channels, i.e., containing no more
than two particles. The generalized Jost matrix function
is introduced and all elements of the .S matrix are
expressed simply in terms of its determinant. Section 3
deals with the Fredholm method. A recursion procedure
is introduced which allows a straightforward generali-
zation to coupled equations. It is then shown that the
determinant used in the previous section is identical
with the Fredholm determinant of the set of coupled
scattering and reaction integral equations. In Sec. 4
the properties of this Fredholm determinant are
exhibited. The necessary and sufficient restrictions are
derived which take the place of the unitarity of the
open channel part of the S matrix. Finally the zeros in
the complex plane are related to bound states and
resonances. Section 5 contains two examples: The
square-well potential, and the continuous superposition
of Yukawa potentials.

2. SCHRODINGER EQUATION AND S MATRIX

We briefly outline the procedure of footnote 3 in
somewhat simplified notation.* The starting point is a.

4In order to conform to the more customary notation adopted
here, all matrix equations of footnote 3 must be read from right.
to left.

188



STRUCTURE OF THE MANY-CHANNEL § MATRIX

set of coupled radial Schridinger equations

3 m + Y VagVa= 8V
B=1

for the channel components ¥,, of the time independent
wave function. The “potential” matrix® Ves=Uga
contains the (diagonal) centrifugal terms; &, are the
channel energies which differ from one another by fixed
given amounts; and m, are the channel (reduced)
masses. If we introduce new wave function components

Ya=m, 1,

and write
V ap=20"2m 30 0gmgh,

then the Schrfidinger equations read
"‘Kba""*"Zﬁ Vagls=koa,

ko= (2m.8.)%/ 1

are the channel wave numbers.

We combine # different column wave functions {{.},
a=1, .-, n,into a square matrix {{.s}, @, =1, - -+, n,
and then write (2.1) in matrix notation

="'+ VY=K¥, @.1)

K being the diagonal matrix of the channel wave
numbers. Each column of ¢ then solves (2.1) and the
columns differ from one another by their boundary
condition.

For the sake of simplicity, we shall restrict ourselves
to s waves only. The case of higher / values and couplings
between them does not present any difficulties in prin-
ciple but it introduces sometimes bothersome compli-
cations. Furthermore, we assume that all elements of V
are local, i.e., functions of r, and energy independent.

The solution® F(K,r)=F(ky,---;r) is defined by the
boundary condition

(2.1)
where ‘

lim ¢X"F(K ) =1, (2.2)
i.e., more explicitly and less precisely,
Fop(K,r) ~ Sape—er, (2.2")
30

Thus the 8 column has only an incoming wave in the
B8 channel and no particles at infinity in any other
channel. Such a solution is in general irregular at the
origin. A regular function ¢(K,r) is defined by the

& The symmetry of the potential matrix V entails the symmetry
of the S matrix, i.e., the reciprocity theorem. Both follow for a
suitable choice of phases of the angular momentum functions
from an assumed time reversal invariance of the interaction
hamiltonian; see, e.g., footnote 1.

¢ The letter K stands both for the diagonal matrix of channel
wave numbers and for the set of k’s. Sometimes we make things
more explicit by writing instead (%1,--+).
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boundary condition

¢(K,0)=0, ¢'(K,0)=1. (2.3)

It can be expressed in terms of the two linearly inde-
pendent solutions F(K,r) and

F(—K, f)"—‘F(—kl, —kz, e ;7)72

¢(Kyr)=(/2)LF (K7 )KTFT(—K)
—F(—K,nK-'F7(K)]. (24)

The matrix function F(K) is obtained by taking the
Wronskian matrix of F(K,r) and ¢(K,r):

FT(K)=FT(K,)¢'(K,r)

—FT'(K,f)d)(K,f):FT(K,O), (25)

which is independent of 7 by virtue of the differential

equation (2.1°) and the symmetry of V. ‘
The modified scattering matrix is obtained from (2.4)

together with the boundary condition (2.2): '

S'(K)=K-'FT(K)FT(—K)K
=F(—K)F(K). (2.6)

The last line follows from the boundary condition (2.3)
inserted in (2.4). The symmetric S matrix whose open
channel submatrix is unitary, is related to (2.6) by?

S(K)=K}S'K?. (2.7)

In order to discuss the properties of the relevant
functions, it is convenient for the time being to dis-
regard the restrictions on the channel momenta imposed
by the fixed differences between the various channel
energies. In other words, we regard all the &’s as inde-
pendent variables.

It is clear from the differential equation (2.1) and
the boundary condition (2.3) that ¢(ky,---;7) is an
even function of all the %’s. It is the unique solution of
the matrix integral equation

¢(K,r)=KsinKr4- f dr'K-1sinK (r—1r')
0
XV ()K", (2.8)

which is always solvable by successive approximations
provided only that the first absolute moments of all
elements of V(r) are finite.® It is then straightforward
to show that ¢(k1,- - - ; 7) is an analytic function of all
the &’s regular in the entire complex plane.?

The function F(K,r), on the other hand, has in
general much less regularity. It follows from the
boundary condition (2.2") that F.g(ks,- - - ;7) is an ever

7 The superscript “T” indicates the transposed, ‘‘*’’ the complex
conjugate, and “?” the Hermitian conjugate.

8 The scattering (or reaction) amplitude is obtained from S by
Eq. (2.15) of footnote 1, where now, of course, S and ® have
additional channel subscripts and k##’. The cross section is still
directly the square modulus of ©.

¢ The proof is no different from that in footnote 1 for the one
channel case.
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Junction of all k’s, except of kg; by (2.5) the same then
is true of Fag(ky,---). F(K,7) is the solution of the
integral equation

F(Kr)=eiKr— f dr' K1 sinK (r—7r')

XV{)F(Kyr), (29)
which is solvable by successive approximations provided
only that the first absolute moments of V' are finite.’ If
the second absolute moments of all elements of V also
exist, then it is straight forward to show® that
Fog(ky,- -+ ;7) is an analytic function of kg regular in
the lower half of the complex plane, but as a function
of the other k’s it has no general regularity properties
unless much stronger assumptions are made concerning
the potential. In other words, we cannot even continue
all elements of F(K,r) to values of ki, -, k, which
correspond to a real energy below the highest threshold,
where one or more of the %’s are imaginary. The same
then holds for F(K), which by (2.5) and (2.9) can be
written

F(K)= 1+fm drK—1sinKrV(r)F(Kr). (2.10)

It is a remarkable fact that in spite of this lack of
regularity of the elements of F(K) the determinant

J(E)=f(ky,- - -) =detF(—K) (211

is an analytic function of all &’s regular in the whole
upper half of the complex plane. Thus, although as soon
as one of the &’s leaves the real axis, singularities of some
elements of F(K) can in general not be ruled out, such
singularities conspire to make the combination of ele-
ments that make up the determinant, regular in the
lower half-plane. The proof of this is given in Sec. 3.

Let us now rewrite (2.6) in the way appropriate to
the formation of the inverse:

F(—=K)=X(-K)/{(K),
S"(K)=X(—K)F(K)/f(K).

Thus X(K) is the transposed of the matrix made up
of the co-factors of F(K). It follows that X ,s(ky,- - )
is an even function of k..

The diagonal elements of S can by (2.13) be written
explicitly by developing the determinant

Ly Xay(=K)Fa(K)
% Xay(—K)Fsa(—K)

Z‘y Xa_'(_kl’ ceey ka, . .)F,ya(__kl’ ceey ka’ . )
- T Xar(—ks, - )Fral—s, -+ )

(2.12)
(2.13)

Saa=Saa,

or

S“ﬂzf(kly T "-km )/f(kh )

=1/Saalky, -, —Fay -+ ). (2.14)
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Thus all diagonal elements of S are obtainable from the
function f(ky,- - -).

Before proving a similar result for the off-diagonal
elements, we derive a number of general symmetry
properties of the .S matrix.

Suppose we define, for a7g3,

fa(K) =2y Xan(—K)F1s(K)ks™,  (2.15)
so that
Sag' =ksfas/f (2.16)
and
fa8=]ba (2.17)

expresses the symmetry of the S matrix. X .5 being an
even function of &,, it follows that f.g is an even function
of ko and kg. Consequently we have by (2.14) for a8,

Saﬂ,Saﬂl(klj R _—ka; o ')=S¢!ﬂ,7 (2183')
Sﬁa’Saal(kl, Yy, —'kay " )= -Sﬁa’(kly Ty _kar o ')'
(2.18b)
Furthermore, we evaluate, for a8, a5y,
[X(_K)F(K)f(kh ] ’_ka; te )
—X(—kyy - bay )

XF(kl’ T —ku) : ")f(klr "')]ﬁ‘v

once by inserting ‘
1/(K)=F(-K)X(—K)=X(—K)F(—K)

in the middle and once on the left:

[ Joy=[X(—K)F(—ky, -+, ke -+ +)
XX (—kyy -+, kay - )F(K) Joy
—[X(—K)F(—K)X(—ky, -+, kay - *)
XF(ky ) —kay =) oy
=[X(=K)F(K)Jpa[ X (— K)F (K) Jay
=kakyfpafar,
which implies that
Sta'Say (b, -+ ) =k )
=Sy, —Spy (R, -y —kay -+). (2.19)

Equations (2.14), (2.18), and (2.19) can be written
compactly

S'POS By, vy —hay - )

= PO SO Q@S (ky, o) —E, - ),

where P(® is the projection on the a channel, and
Q0 =1— P This equation contains its own generali-
zation. If we write P(#--) for the projection on the
(e, B, + - ), channels, then it is a straightforward alge-
braic exercise to show by repeated use of (2.20) and its
version for k,— —£k, that

(2.20)

S’P(aﬁ“')s’(kl’ RN _ka, _..kﬁ’ — )
= PlaB-- ) §/Otb-- )
_Q(aﬁ--‘)S’(k]’ Y _ka7 _kB, - ')' (2'21)
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The most important special case is obtained by multi-
plying it on both sides by P¢f--):
Pla 08" PGB (by v — kg —kg, — )

X PlaB: )= plag-- ~)’ (222)

which says that the (a, 8, - - -) submatrix of
Sl oy ~key ke, =)

is the inverse of the (@, 8, - - -) submatrix of S’.1°

We now look back at (2.20) or its detailed statements
(2.14), (2.18), and (2.19). On inserting (2.16) and
(2.14) in (2.19) for B=+ and using the evenness of fug
as a function of %, and kg, we obtain the equation

GRS

=U(k1; sy —Ra, )f(kl’ ..
‘f(kly'“)f(kh B _kﬂ’

or, equivalently,

Saﬂ2=5aasﬂﬂ—f(k1) Tty

=k )

—kg, )/ kaks (2.23)

— ko —ka, - )/f By ).
(2.23)

Equations (2.14) and (2.23) completely determine the
S matrix from the function f(&i,---). [The sign am-
biguity inherent in (2.23) is of no consequence. ]

3. FREDHOLM METHOD

Before we can prove that the function f(&,---) of
(2.11) is equal to the Fredholm determinant of the
scattering integral equations, it is necessary to generalize
the Fredholm method to coupled equations, i.e., matrix
integral equations. In order to facilitate matters, we
shall use a general matrix notation also for the “con-
tinuous indices,” i.e., for the arguments of the integral
kernels. The formal development will hold for finite
matrices as well as for infinite, discrete or continuous
matrices provided certain convergence conditions are
fulfilled.

We want to find the inverse of the matrix

M=1-aR, (3.1)

where « is a parameter introduced for convenience. We
form the inverse in the familiar way by constructing
the matrix N which is the transposed of the (signed)
co-factors of M, and divide by the determinant:

NM=MN=1detM=1A. (3.2)

Both N and A are expanded in a power series in a:

N=Y o"N®, NO=1, (3.3)
0

A=Y a"A™, A®=1, (3.4)
o

10 This is Peierls’ version of the unitarity condition; see R. E.
‘Peierls, Proc. Roy. Soc. (London) A253, 16 (1959).
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We then use the well-known differentiation rule for the
determinant!!;

(d/da)A=Tr N(d/de)M=—Tr NR
and evaluate the left-hand side by (3.2):

—1Tr NR=—RN+ (1—aR)(d/de)N
= —NR+[(d/da)N](1—aR).

(3.5)

On inserting the expansion (3.3), we obtain the recursion
relation

N =RN®— (1/n)1 Tr RN

=N"DR—(1/n)1 Tr RN, (3.6)
while (3.4) substituted in (3.5) leads to™
o
A=1-Y — Tr RND, 3.7
1 on

For infinite dimensional matrices, the expansions
(3.3) and (3.7) together with the recursion (3.6) con-
stitute the Fredholm method for the formation of the
inverse

M1=N/A. (3.8)

Usually it is more convenient to write this in the form
M=14(a/A)NR=1+ (a/A)RN =1+ (a/A)V, (3.9)

which is readily demonstrated by the use of (3.3), (3.6),
and (3.7). In that case

Y= or¥™ (3.10)
o
and the Y are determined by the recursion
YW =RY»—(1/n)R Tr ¥ » 1
=Y DR—(1/m)RTr V»V, Y®=R (3.11)
while
A=1-3 —Tr YD, (3.12)

1 n

The foregoing procedure is used to solve the equations

v =\I’0+aR‘I/
or
M‘I’ = ‘I/().

1w “Tr” stands for the trace of the matrix, including the con-
tinuous indices.

121f M has the finite dimensionality D then, of course, the
power series (3.3) and (3.4) must break up and reduce to poly-
nomials of degree D—1 and D, respectively. It is readily checked
by (3.6) that a necessary condition for N+ to vanish is indeed
that D=m+1. Since this condition must also be sufficient we

find that
RND-D=1[Tr RN®V]/D
R1=N®D[D/Tr RN®D],

or

which is a simple recursion method of constructing the inverse
of a D-dimensional matrix.
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Equation (3.9) then states that the solution is
¥ =T+ (a/A) V¥,

At this point we may revert to a more explicit notation.
Let R be a finite matrix of integral kernels. Then (sup-
pressing the finite matrix indices)

¥(r)=Vo(r)+a f - drR(r )T (r")
is solved by '
\Il(r)=\I/o(r)+~Z— j; " W),
where
Y(r,r')=i:: V™ (rr),

0 o

A=1—- Z——trf drV (=D (g 5),

Y (’,’l) = f dr"R(r,r") Y (r—1) (r",r’)
[

1
——R(rys’) tr f
= f dr’’ YD (y y'YR(r" ')
0

——R (r) tr f
YO(>ry)=R(rr"). °

and “tr” now refers to the trace only over the finite
indices.

For the type of integral equation arising in scattering
theory we have

R(r)=G(ry )V (r),

where G(r,r') is a “zero order” outgoing-wave Green’s
function. It is then customary to write the solution of
the integral equation

YO =witr)ta [ " gl V()

L)

dr''y (=1 (ru’rn)

My(n—l) (,.li ru)

in terms of a resolvent or ‘“complete Green’s function”:

\II(r)=‘I/o(r)+afw dr' S(r YV (rYTo(r').

0
Our result then is that
O (rr)=3(rr")/A, (3.13)

where both 3 and A are obtained as power series expan-
sions in « (the “potential strength’’):

3(rr)= i ar3 ™ (rr") (3.19)

0 an 0
A=1-3 i f a3V V), (3.15)
1 n 0
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and the 3(") are determined by the recursion

3™ (rr)= f ar'glr NV (") s D" ")
(i}
1 00
— __.g (f,f’) tl‘ f d’,ll 3(1!—1) (f”,f") V(f”)
n 0

= [ @iy enges)
0

oo

1
—=G(rs") tr f "D V), (3.16)
n 0

5O )=G(rr).

There remains the problem of proving the con-
vergence of the series in a. The recursion method for
obtaining the Fredholm resolvent and determinant
outlined above is more convenient and more manageable
in the matrix case than is the customary way of writing
them. However, when it comes to the convergence proof
then the usual explicit solution of the recursion is
much the more powerful because it allows the use of
Hadamard’s lemma.!?

We shall write the solution of the recursion (3.11)
for the case of discrete indices. The continuum case
differs then only in an obvious notational way. The
claim is that

(_ )” Raﬁ Raal Raun
Yaﬂ(")=
n! ai,---, an Rz_qﬂ Ra1a1 R.alan
R;nﬂ Ranal R;nan
3.17)

solves the recursion (3.11). The proof is immediate
since the development of the determinant in (3.17) ac-
cording to the first row yields

V.em (_)n Z {R R:-'lal .folan
«g'™ = ap) : :

n! an -0 Rana]_ Ranan

Rgxlﬂ Ra]_ag e
_Raal
anf
Raip Rajar +-»
+ Raaz e
anf

=—(1/n)Rap Tr Y= D4RV D7 4.

In the case of matrix integral equations, each index in
(3.17) comprizes two (or more) numbers, one of which
runs over a discrete and the other over a continuous

13 See, for example, E. T. Whittaker and G. N. Watson, 4
Course of Modern Analysis (The MacMillan Company, New York,
1948), Chap. XI.
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range. That is why that way of writing the Fredholm
solution becomes cumbersome. The convergence proofs
now start from (3.17) in the standard manner.13.14

The matrix integral equation for the physical s-wave
scattering wave function is

W(K,)=K— sinKr

ta dGEVEWES), (318)

where

S(K;rs)=—KsinKr eEr>, (3.19)
If we take any k into the upper half of the complex
plane then G never gives rise to exponential increase as
r' — . As a result the usual convergence proofs of
the Fredholm theory' ! apply there, and it is straight-
forward to see that both 3(K;r,”") and A(K) of (3.13)
are analytic functions of all ’s regular in the whole
upper half of each complex plane.’® It follows from a
comparison of the incoming wave part of the asymptotic
form of (3.18) and (2.4) that

V(K =¢(K,[FT(—K) I

A further function needed is G(K,r) which solves

(3.20)

G(K,r)=eiK'+afw dr's(K;rYWEG(Ky). (3.21)

Since G(K,0)=1 and asymptotically G(K,r) has no
incoming waves, we have

G(K,)=F(—K, r)F(—K). (3.22)

Multiplication of (2.10) by F(K) on the right, there-
fore, yields

FY(—K)= 1—afm drK' sinKrV (r)G(K,r). (3.23)

We now differentiate G with respect to a. By (3.21)
(8/da)G=GQVG+aGQV (d/da)G,
the solution of which is

(d/da)G= BVG, (3.29)

since

O=g+a®Vg=G+agV & (3.25)

is the integral equation for the complete Green’s
function ®. Next we differentiate (3.23) with respect
to « and insert (3.24):

(@/da)F(—K)=—[Yo+apoV OIVG,
where
Yo=K 1sinKr.
4 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951).

15 We always assume that all elements of ¥ have finite first and
second absolute moments.
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A glance at (3.18) shows, therefore, that
@/d)F(=K)=—= [ ay KAV OIGK)
0

and consequently, by (3.20),
tr F(—K)(d/de)F*(—K)
——tr f HCEKSTK NV (). (3.26)
0
Now the complete Green’s function & can be repre-

sented as!¢

- K; GT Kaly ,)
inn=] SENGTUS), 7<r

(3.27)
—G(K)pT(K,r'), r>7'.
Equation (3.26), therefore, says that

tr FY(—K)(d/da)F(—K)= —1tr fw dr&&K;rn)V(r)

=—Tr GV.

As a result we get for the derivative of the determinant
of F(—K)

(@/da)f(K)/f(K)=tr F(K)(d/de)F (— K)

=-Tr @V,
or if we define
Z(K;ry)=f(K)S(K;r7s") (3.28)
then
(@/da)f(K)=—Tr ZV. (3.29)

We now want to show that the function Z of (3.28)
is equal to 3 of (3.13). We know that both f(K) and
Z(K;r,y') can be expanded in convergent power series
ina:

JE)=Z O ®), [O=1;

Z(K; r,r')=i arZ™(K;ry');
' ZOK;rp)=G(K;rr).
Equation (3.29), therefore, states that
f™=—(1/n) Tr Z=1V.

On the other hand, multiplication of (3.25) by f and
expansion in « yields

yACOES gVZ(n—I)+gf(n)
=QVZD—g(1/n) Tr Z#-DV.
Since that agrees with (3.16), we have Z=3 and hence
f(K)=A(K). (3.30)
16 The proof of this is the same as for (9.22) of footnote 1.
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We have, therefore, the important result that the
function f(K) in terms of which all elements of the
S matrix can be expressed by (2.14) and (2.21), is
identical with the Fredholm determinant of the set of
coupled scattering integral equations (3.18).

4. PROPERTIES OF f(K)
It follows from the boundary condition (2.2) that
when all %’s are real,
F(—ky, —ksy <+ ;7)=F*(kylea,- - 57)
and, ¢(K,7) being even in all #’s and real for real #’s,
F(=ky, —ks, - )=F*(kr,ks,--); 4.1)
consequently
J(—ky, =k, - )=f*(k k2, )
This implies that in any region of analyticity connected
with the real axis
fH(—ko*, —ks*, -« ) =f (ks kg, - ). (4.2)

Since the Fredholm determinant A is an analytic
function of all #’s regular in the whole upper half of
each complex plane, so is f by (3.30), and (4.2) must
hold in the upper half-plane.

A rather more complicated property of f follows from
the off-diagonal elements of (2.19). On taking 85y, we
obtain

ffﬂ'r(kl; Ty *y —ka, "')fﬁ‘r

- kmf«ﬁfar (4"3)

On inserting (2.23) in this we obtain, after squaring, an
explicit expression for f(ky, -+, —ka, —Fkg, —Ry, -+ *)
in terms of f with only one or two &’s changed in sign:
f*8apr=f(8agoy+8agrat818a8)— 28888~
+2[(gags—8as ) (87— 851/ (8x8—8vaf) I

where

—~Bay -+ )=f(ky, -

44)

ga‘:-‘:f(kly ] “ka; ))
gaﬂif(klx vy ke —kg, - ")7

This equation, which comes into play only for three or
more channels, together with (2.14) and (2.23), is
equivalent to (2.21) and hence implies equations (2.22)
for all choices of submatrices.

There remains the questions of the unitarity of the
S matrix, Suppose that k., ks, - - -k are positive real
and all other k’s are positive imaginary. Then we can
use (2.14) and (2.23) and (2.16) to form S;,’, where &
and vy are among the a, 8, - - -A. Equation (2.22) then
implies that

P(aﬁ‘ . -)SIP(aﬁ. . .)S/*P(aﬁ. . )=P(aﬂ. . .),

etc.

4.5)
and consequently by (4.7) and its symmetry, that the
open-channel submatrix of .S is unitary:

P(aﬁ...)SP(aﬁ-v.)StP(gﬁ..‘)=P(aﬁ...), (4.6)
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provided that

S5y (—K*) =Sy’ (K). (4.7)
Of course, this property follows from (4.1); but if we
construct the § matrix via (2.14) and (2.23) we must
be sure that it is indeed satisfied. Because of (4.2), Eq.
(2.16) shows that (4.7) holds if

Jor*(—K*)=—fs, (K).
It follows from (2.23) and (4.2) that
[for(—K*) = fiy(K) 5

but (4.8) is more stringent.
It is clear from the unitarity (4.6) that (2.14) implies
the inequality

lf(kl:y“km)]‘{lf(kb)l (4'9)

for real positive %, and all other #’s either positive or
positive imaginary. Suppose we take k. and &z positive
and all other #’s positive imaginary; then (4.2) and
(2.23) lead to

kakofos?=|f(ky, =) —kay -+ 2= | (R, - )],

which by (4.9) is negative. As a result (4.8) is indeed
fulfilled and the unitarity condition holds. In other
words, (4.9) implies (4.8) for k; and %, real and all
other %’s positive imaginary. Next we move %, off the
imaginary axis. Both sides of (4.8) being analytic
functions, the equation must continue to hold. It must,
therefore, hold also when %, is real. This operation may
be repeated. As a result the set of inequalities (4.9) is
all that is necessary in order to assure (4.8) and hence
the unitarity condition.

A final property of f(ky,- - -) is readily shown by the
Fredholm procedure.!® If all £’s are kept either on the
real axis or in the upper half of the complex plane, then

Jlyy---)=1. (4.10)

{4.8)

lim

lkt] Hegfes e

These are all the restrictions on f. Equations (4.2)
and (4.4), and the inequalities (4.9) are necessary and
sufficient conditions (together with the regularity
property of f) in order that (2.14) and (2.23) lead to a
symmetric and unitary S matrix. Equation (4.10) is an
additional property that leads to.S=1 at infinite energy.
Equations (2.14) and (2.23) allow in general the
construction of the open-channel part of the .§ matrix
only. In other words, S, Saa, and Sps are in general
well defined only if k. and %4 are real and all other %’s
are either real or positive imaginary. In order to define
S'in a larger domain, f would have to be continued to a
region where some %’s are in the lower half plane. There
we know nothing about its behavior. However, if the
potential matrix V is known to satisfy more stringent
conditions than assumed so far, then f may be shown
to have a larger region of regularity. The situation is in
that respect just as in the simpler case of a single
channel! If all elements of V vanish at infinity more
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strongly than exp(—2upr), then f(ky,.--) is regular
also in a strip of width u in the lower half-planes of
all &’s. If all elements of V vanish identically beyond a
finite point, then f(ky,---) is regular for all finite &,
Eay -

We now want to discuss the significance of the zeros
of f in the upper half plane. For that purpose it is con-
venient to consider the function

H(K,r)=F(—K, nX(—K)=G(K,)f(K),
which solves (2.1") and the integral equation
H(Kr)=f(K)e'r

+f dr'S(K;rYWEHKy). (4.11)

o

It can therefore be written

H(K,r)=f(K)eiK’+f dr'a3(K;ry\V(r)eX. (4.12)
0

For fixed 7, H is an analytic function of all &’s regular

in the upper half-plane'® of each k. It is also uniformly

(in r and all &’s) bounded in the upper half plane of all

k’s. , -
Suppose then that

flaa, - --)=0

at a point (ki,- - -), where all «’s are either positive or in
the upper half-plane. We can establish at once that
this cannot happen when all «’s are positive, for then
there must exist a set of numbers cg so that

> s Fs(—K)cg=0 forall vy
and by (4.1)
25 cg*[F7(K)Js5=0.
But we can easily evaluate the Wronskian matrix for
F(K,r) and F(—K, r) at infinity and at zero:
FT(K)F'(K,0)—F""(K,0)F(— K)=2iK,
multiplication of which on the left by {cs*} and on the
right by {c¢s} then yields
2 5] cs| s =0.

This is impossible if all «’s are positive.

Now, then, for ki=x1, ka=«,, ---, by (4.11) H(K,r)
vanishes at r=0; it is a regular wave function. As
r — o« we have the following situation: For!” Im x.>0,
we obtain from (4.11)

1 r
0

7-500 ZiKa

+f df’eim(TI_T)EVO'I)H(K,’,)],,;,‘ } +O(G—Im xqr)

17 “Re” and “Im’’ denote, respectively, the real and imaginary
part of a number.
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which is square integrable. For Im «,=0, we write

Hyp=e"rX,5(—K)

—K’Y_lf dr' sink, (r—")[V (') H(K,") 1ys,

r

where by (2.10)
Xyp(— K) = dysf (K) — by~ f dr sinkyr LV () H(K 1) s

0

which exists for real &, and all other &’s real or in the
upper half-plane. Moreover, if &, is positive and all
other B’s are either positive or positive imaginary, and
f=0, then X,5(—K)=0 for all 8. That fact is easily
shown by evaluating the Wronskian matrix for H and
H* once at r=0 and once at r= o . When all ? are real,
we obtain

fX(K)H' (K, 0)—f(K)H" (K,0)
= —iX'(—K)RKX (—K),

R being the projection on the channels with real &’s.
Hence if f(K)=0 then

X'(—K)KRX (—K)=0,
and consequently, if all the real «’s are positive, then

Xys(—K)=0
for all B.

In other words, when f(ki,- - -)=0 at a point (k1," )
where each « is either real or has a positive imaginary
part, then there is not, in general, a bound state; but
if that happens at a point where each « is either positive
or positive imaginary, then we have a bound state. If
all ¥’s are positive imaginary then the bound state is of
the type usually considered: all channels are closed.
If some are real, then the bound state is “embedded
in the continuum” a state of affairs discussed at length
in a recent paper by Fonda and Newton.!® Finally, if
the forces that would lead to a bound state of the latter
type are slightly altered, then the zero of f, with all but
one, say, of the «’s fixed, will move off the imaginary
axis and cause a resonance (in the absence of other
disturbing nearby singularities of the S-matrix).!®

5. EXAMPLES
Square Well

Assume that for r<r, the potential matrix V is
constant and for #>ry, it vanishes. We write (2.1")

¥+ A4y =0,

181.. Fonda and R. G. Newton, Ann. Phys. 10, 490 (1960).

19 An analytic function of # variables vanishes on an (z— 1)-di-
mensional complex hypersurface. Insertion of energy conservation
among all the «’s generally eliminates the zero altogether after the
perturbation. But if between two groups of «’s the energy conserva-
tion is relaxed, then the zero is retained and moves generally off
the real axis. That is the state of affairs treated from a somewhat
different point of view in footnote 18.
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where

f<1’o,

K-V,
a-]

K2, r>70.
We diagonalize the matrix 4 for r<r,:
A=TaT7,

where a? is the diagonal matrix of the eigenvalues of 4.
The solution F(K,r) must be of the form

T(ee*B+e—arC),

iK
e iKr

. r<ry,
F(Kr)= {

r>ro.

The constant matrices B and C are determined by the
requirement of continuity of F(K,r) and of its first
derivative. We find that for r<7,

F(K,»)=[T cosa(r—ro)T1
—iTa sina(r—ro)T—1K Je— &,
and therefore,

F(K)=[T cosareT-'+iTa" sinareT-K Je~&ro
= Ta ! sinaroT Y Ta cotaryT--iK Je—iKro,

s0 that

J(K)=[11, e?*=Il,a; ! sina,rc]
Xdet[ Ta cotar,T'—iK ).

If we take the case of two channels and set

ei=ago, pa=Rar,

R.=A4 aa*fo = (Pa2 - Vaarﬂz) *r
then
e1,2=3(R2+R) £ 3[(R2— R2)* -4V ]}
and
ei(p1+pz) sinel sinez

f(lyykz)= - g(p1,p2),

az—ay €1 €2
where®

g(p1,p2) = 1p1(Cra;— ezﬂlz)‘l“h’z (Coa1—Craz)
+ (a1—as) (p1p2— C1€2)
with

ar=e*— R2=RS—es?, ar=el—R®=R?—er,

C1=¢; cote;, Cr:=e; cote,.

dkl’

R. G. NEWTON

The S matrix is given by

2.

511=+—f2ip1’

g(o1,02)
Sup= glos, — pz2) g

g(P1,P2)

—C ]
S1e=Su= 2(¢1— Ca) (eenpues) ¢—ilprten)
g(p1,02)

Potentials of the Yukawa Type
Suppose
v0)= [ dmotuen,

where p is a matrix and p.s(u) =0 for u %oqs. Then
R(K ; ry)=—K- sinKrce'Er> f dup(p)ere.

It will be advantageous to do everything in Fourier
transform language:

1 (] 0
R(K; kE)=— f dr f dr'e¥e#*"R(K ;r,")
2r Jy 0

=2im' [k +ay ity
X (k' —K—ip)""p(u).
Then .
TrR(K)=—i f ’i—" L dk tr(k+K)-!
" X (k—K—iu)"'p(n)
=—1 f — tr(2K+-ip) o (u)

i

du
=—i| — 2 (2katip)pua(n).
ﬂ a
So as a function of k. there is a branch line along the
negative imaginary axis, starting at k.= —%igoqa-
In order to find the singularities of ¥ we must,
according to (3.6), look at Tr R**; the term R Tr ¥ »~1

gives no new singularities.
We need, then, R?:

- (B~ K—in) (h+-K)
Xp()- (¥ — K—in') 1 (R"+ K)o 0)'.

All integrations in the trace are readily done and we obtain after some algebra:

Eat-katintin

Te R (B)= =2 [ oo [ X pus(u)ose(s’)

(u+n") (2katiptiu’) 2ke+in+iu) (katkotip) (katkotin)

% This is the function F of (5.8) in footnote 18 which contains a sign error. Otherwise the notation is the same.
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The only new branch line comes from
kotkgtin=0

or the same with ¢ — 4u/. That branch line starts at

kg @ = —i(poag™+ 2Malap)

X {uoagt (Me/m) poas?— 24 us(mp—ma) 11},
where ‘

Aap= (ko’/2ma) — (ks’/ 2mp).

The branch line extends along the negative imaginary
axis only, provided that
poas>[28as(mp—ma) 1} (A)

otherwise it runs partly parallel to the real axis.
Since the branch lines arise simply from the coin-
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cidence of singularities in the original integrands, it is
clear that the branch lines of Tr R? are the only ones
that will occur in Tr R and hence in the »th term of
the expansion of the Fredholm determinant. We may
conclude that A(ky,---), considered as an over-all
function of %, i.e., with all &’s expressed as functions
of kg, has a branch line along the negative imaginary
axis from k3@ on, provided that (A) is satisfied for all
poap. In addition, there are the usual branch points
coming from the energy conservation between channels;
but those lie, of course, necessarily on the real and
imaginary axes.

We finally form the S-matrix elements from A by
(2.14) and (2.23). Then one or two of the &’s must
change sign. As a result we get branch lines also along
the positive imaginary axis. The criterion for branch
lines on the imaginary axis only remains (A).
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A mathematically neat derivation is given of the relation between the § matrix and the transformation
function for a finite time. It is shown that one can dispense with the adiabatic switching on and off, and
yet one reaches the same result as when one employs it. Necessary conditions are discussed for the validity
of this statement. Systematic prescriptions are given of handling products of principal value singularities,
which is relevant to the scattering theory in momentum space.

I

HE best way to understand the nature of a
propagator as used in the quantum theory of
scattering, both in field theory and in ordinary quantum
mechanics, is to consider it as the boundary value of
some analytic function.! Once one admits that the use
of such a propagator is well founded, one can proceed
formally in the scattering theory if a set of consistent
rules is introduced which disposes singularities in
momentum space in terms of the delta functions and
principal values.

It was pointed out recently? that Egs. (1)-(4) as
given in the following play a key role in the so-called
synthetic or inverted approach in quantum field
theory, so far as one agrees to proceed along the line
first mentioned. The advantage of such an approach is
that one establishes the quantization even when some
phenomenological form factor is introduced. The value
of such a form factor is somewhat questionable as the
final theoretical tool to be used in the explanation of
the properties of elementary particles. Nevertheless,
one can emphasize the importance of studying the
local field theory as the limit of nonlocal form factor
theory. Also, one can show that the relations (1)-(4)
provide a clear-cut division between off and on the
energy shell of a transition amplitude, however com-
plicated a problem may be.

The relations to be established are as follows. Define
the unitary transformation function for a finite time
Xo by

ﬁ(xo)=exp[§ [ e(xo,yaF(y)d«*y]aexp[ic:(xo)], W

—o0
in terms of a step function

+1 a>b
e(a,b)={ for
-1 a<lb

* This work is supported by the Air Force.

1On leave of absence from Tokyo University of Education,
Tokyo, Japan. Present address: Physics Department, New York
University, University Heights, New York 53, New York.

1 Cf. e.g., G. Killen and A. Wightman, Kgl. Danske Videnskab.
Selskab, Mat. fys. Skrifter 1, No. 6 (1958); there is quite a lot of
literature on the dispersion relation.

(lzgl.)‘l‘ani, Phys. Rev. 115, 711 (1959); J. Math. Phys. 2, 46

and an operator F(x) defined at a point x in space—tiﬁxe.
The translation of the system, say, from the time #;
through ¢, is conducted by the transformation function

U(to,t)=U(t2)- Utr). (2)

The S matrix is given then by
S=exp{i f F (x)d“x], 3)

with the same operator F(x) as in (1). If we assume
the adiabatic switching on and off,® we can establish (3)
by substituting (1) into (2). That is to say, we can put

S= lim Ultat). @

00, i1——w

This means that the .S matrix is defined as the transla-
tion operator from — o through -+ in time. We are
interested first in establishing (1)-(4) without recourse
to the adiabatic switching on and off.* The validity of
(1)-(4) imposes some restriction on the property of
F(x), as a matter of fact. This restriction is stated in
Sec. I1.

If one employs the momentum representation, Egs.
(1)~(4) require that a product of principal values
must be carefully treated. This is known in the case of
a product of two principal values. The following
equality is known under the assumption of regularity of
the matrix element of F as a function of energy:

(alF[b)(blFIc){PE —P——
g~ Lep b Le

+7%(Ee— Ep)d(Ey—E.)—

~

@ ¢

1 1
x(P +P. ) }=ﬂ, (5)
E,~E, FE;—E,

3 As an example one can refer to Egs. (3.6) and (3.7), p. 1618,
in M. Gell-Mann, M. L. Goldberger, and W. E. Thirring, Phys.
Rev, 95, 1612 (1954).

% This is known in the case of scattering by a finite-range and
regular potential. See N. Levinson, Kgl. Danske Videnskab.
Selskab, Mat. fys. Medd. 25, No. 9 (1949); J. M. Cook, J. Math.
and Phys. 36, 82 (1957); J. M. Jauch, Helv. Phys. Acta 31, 661
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where E, denotes the energy in the state a. Out of four
terms appearing in (5), one cannot perform the integra-
tion over E; earlier than over other variables in the
first term; however, one can define such an integral as
the combination of three other terms. It is assumed that
a matrix element (a| F|5) is regular enough as a function
of both E, and E; so that a multiple integral of a
product of F with a principal value is well defined if
performed in a suitable order. The situation in which
the number of principal values is larger than two is
studied systematically in Sec. III.

II

Let us first define the Hamiltonian as the generating
operator of an infinitesimal change in time. It is defined
by

i[dU(t)/d]=H @)U (t). (6)

It is given actually by

a a _
H(I)='L[;{~—U(i) —d-t U@

- f Pa(F(x)+ (1/2)[F (), —iG(xr)]

+(1/3D[F (%), —iG(xo)], —iG(xa) 14 --}. (7)

In the following we suppress the integration over
space coordinate in order to shorten the notation. Let
us consider the operator J® (¢) which is defined by

I(i’(t)=U(t)-exp[:|:~;: f_ wF(x)dx]. ®

The most essential step in the proof is to show, for an
arbitrary but finite ¢, that

](:L-)(t)=P(exp[—i L ;H(x)dx]),

where the Hamiltonian H (}) is defined in (7) and P is
the Dyson’s chronological ordering operator,® namely,
the right-hand side of (9) is the shorthand notation for

P( exp[—-i f; H(x)dx])

—1—i f " Hsdat (=i f

-0 -0

©)

t

H(x)dx

X J H@)dy+---. (10)

(1959); and other papers quoted in them. We reformulate the
problem here in order to make our results applicable to wider
classes of problems than potential scattering. See the next to the
last paragraph in Sec. II.

5F. J. Dyson, Phys. Rev. 75, 486 (1949); see p. 492.
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If one admits (9), it is evident that we must put

‘liml<+>(t)=1. (11)
Equation (11) establishes the consistency of the
definition

i [ emrcons] o]
=exp| — F(x)dz|. (12)

~—00

In this way we can dispense with the adiabatic switching
off, and yet we reach the same result as when we use it.
The limit ¢t— 4o of U(f) can be established in a
similar way. When both limits, t, — - and ¢, — —
are combined in U (ts,t;) we establish (4).

Now, Eq. (9) can be established by expanding both
sides into powers of F(x) and by comparing them at the
same order. We denote an order of the expansion by a
suffix. Accordingly, we write

D=1+ 3 LD, (13)
and
H)= 3 H.0). (14)

n=1
Also we write for the right-hand side of Eq. (10)

P(exp[—i f_ ; H(x)dx])=1+ > 7.9(). (15)

ne=l
As a result of the definition given by (10), we have

Tasi® (D)

=—1 f dx{Hpnp1(x)+ f_lﬂm(x)f,._w(x)}. (1_6)

-0

Suppose Eq. (9) is established up to the order n. We
have to see the condition under which Eq. (9) holds for
the order #+41, namely,

Tt @) =11 (1). (17)
From (7) and (1), we have
H,.()=(— 1)".(;’)"’- [:dxl- . ~J:dme(x1)"'
n 1
Flx, e(x,t)- - -
XEGn) 2 D
Xe(ti1,0)e(t,x541) - - e(t@m)d(t—%j), (18)

where there are (m—1)¢'s for all j. From (8) and (1),
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we have )
1 m ] o
Im(+) (t): (—é) f dxl. .. f dme(xl) o

XF(xm -
&) D im0

Xe(lx1)e(tx) - - - €(t,m—js1),

(19)

where the jth term is a product of only (m— j+1)es.
If we substitute 7,,(f) given by (19) and Hn(!) given
by (18) for m up to # on the right-hand side of (16),
it turns out that the necessary condition for the
validity of (17) is that the following condition holds for
an m-times product of F(x) for all m up to n+1:

[Cas [ anr- e 5 et

xe(xi:xfl) e e(xﬁxj—l)e(xj;t)e(x.iax.’l'+1) T e(xj,xm)
+€(t)x1)e(t7x2) e e(t)xm) +D(m)} =0} (20)
where me’s appear in each term and the constant D(m)
is given by
0 if mis odd
-1

D(m)= (21)

if m is even,

and ¢ is arbitrary but finite.

It is not difficult to see that the expression inside
the curly brackets in Eq. (20) vanishes almost iden-
tically, namely, we have

m

2 e(xj%1) - - (1) e(xs0) e(x5,0501) - - - €(wj%m)
=1
+e(t,x)e(t,xs) - - - €(txm)+D(m)=0,

except when several points coincide. The exception
arises because a step function is not defined when its
arguments coincide.

In order to see that validity of Eq. (22), let us first
observe that the left-hand side of (22) is invariant
against any permutation of the m--1 points, ¢ through
%». This means that we have only to verify the identity
for any arrangement of the m-+1 points which is con-
venient; we should get the same result for any other
arrangement of m-1 points. One can easily see Eq. (22)
to hold when the arrangement of m-1 points is such
that

(22)

>822 > %o

On coming back to the validity of Eq. (20), we see
that it is established if the operator F(x) is regular
enough such as:

(i) The integration over x with a step function e(ix)
as a weight is well-defined for an arbitrary but finite ¢.
This means that the contribution from x=¢ does not
introduce any difficulty but can be simply neglected.

TANI

(ii) The multiple integral converges uniformly,
when the integrations are made according to the order
specified by the number of times by which each variable
appears. In the jth term as appears in (20), the integra-
tion over x; should be performed at the end, the order of
integration over other variables should be interchange-
able among them.

Given a particular F(x), one may raise the question
as to whether the conditions mentioned above are
satisfied for such a particular F(x). We do not go into a
systematic investigation of a sufficient condition for
the validity of our key equations (1)-(4).* It consists
of two problems: (i) find the sufficient condition for
the validity of (20) or (27) and its generalization, and
(ii) find the sufficient condition for the convergence of
the expansion into powers of F(x). The solutions to
these problems are very valuable, especially when they
are formulated in momentum space.

Finally we should have shown how to prove (17)
when (18)-(20) are used. Since this is a straightforward
algebraic calculation which involves only handling a
number of binomial coefficients, we only assert our
result and skip to give a detail of such a calculation.

III

It is to be remarked that when one introduces the
momentum space representation, Eq. (20) formulates
a set of rules for handling a product of principal value
singularities. Let us write the matrix element of F(x)
between two states, say, @ and b, in momentum space as

(@|F(®)|b)= (a| F|b) exp[ —i(E.—Es)t].  (23)

Recall that the following symbolic calculations are
valid under the regularity conditions as discussed in
Sec. IT:

-]

f exp[—i(Eam Ey)aldx= 28 (Ea—Er),  (24)
f w%e (t,x) exp[—i(E.— Ep)x]dx
=exp[—1 (Ea-—Eb)t]PE : (25)

Substitute (23) into (20) and perform the integration
according to (24) and (25). Then, we have an equation,
which is valid as a distribution equation among products
of principal values.

Let us quote an example for which m=2. Equation
(20) in this case specifically reads

[ @ f dyF (2)F () (e(1x)(ty)+e(t)e(zy)
- +e(y)e(yx)— 1} =0.

When we calculate the matrix element between states,

(26)
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say, ¢ and ¢, we have the following results:

¢ Y

=(a|F|b)d| F|c)- exp[—i(Ea— E.)(]

00

f be()ds [ 3 FFG)

-0 ~—a0

@

f be(at)dz f Ye(xy)dyF ()F ()

Cof s 2

=(a|F|b)b|F|c)- exp[—i(E.— E.)t]

1 1
P )

E,—E, E,—E,
<a [ seonay i >

=(a|F|b)b| F|c)- exp[—i(E.— E.)t]

1 1
P P :
Ea—' Ec Ea"‘ Eb

2

=(a|F|b)b|F|c)n%6(Ea— E3)8(Ey—E.),

- P (27b)

0

3e(yx)dxF (x)F (y)

(27¢)

o0

[ [ My WE)

-0  Y—o

(o

respectively, in the order as they appear in Eq. (26).
One should be careful to keep a proper order of integra-
tion so that the integral is meaningful. In writing the
preceding results, the integration over the density of
the intermediate state b is suppressed. When (27a)-

(27d)
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(27d) are summed up, we see that the relation (5)
mentioned in Sec. I is established.

In this way, if represented in momentum space,
Eq. (20) will provide a systematic method of exploring
the products of principal values in general situations
such as are encountered in the scattering theory.
Actually the rules defined in this way reproduce all of
the rules used in our earlier publications.? They were
formulated by a more primitive method. In that method

one starts with
1 Ea—Eb

P ~
Ea_Eb (Ea'—Eb)2+e2

78(Ey— Ey)~—
(Ea— Ep)? e

and takes the limit e — 0 at the end.

In conclusion, we have established that if the
regularity conditions formulated in Sec. IT are satisfied,
the adiabatic switching on and off can be justified as
the conventional means to derive the right result. We
have dealt with only the exponential form of a unitary
transformation function. This is made in connection
with its usefulness, since the exponential form is unique
in that we can ignore processes which are represented
by reducible diagrams. As far as justification of the
adiabatic switching is concerned, we can treat the
other types of transformation function equally well.
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A classification of four-dimensional Riemann spaces with signature -2 is given. The classification depends
upon the differential as well as the algebraic properties of the Riemann tensor. The tool employed is the
infinitesimal-holonomy group of the space. An introduction to the concept of the holonomy group is given,
and the technique of classification is outlined. A comparison with the classification of empty spaces given
by A. Z. Petrov and with the recent work of E. Newman is also given.

1. INTRODUCTION

CLASSIFICATION of Einstein spaces according

to the eigenbivectors of the curvature tensor has
been given by Petrov.! This classification depends only
upon the algebraic properties of the curvature tensor
and does not take into account its differential properties.
The present paper gives a classification of general
V4's with signature +2 [V4(+-++—)’s] which is based
on the theory of the infinitesimal-holonomy group (ihg)
for a V4 This theory involves not only the curvature
tensor but also brings in all of its covariant derivatives.
Thus we are led to a classification of V4(+++—)s
which brings in the differential as well as the algebraic
properties of the curvature tensor.

We begin (Sec. 2) by introducing the concept of an
ihg for a general V ,, and indicate its relation to rotation
groups. This is followed (Sec. 3) by an elementary
discussion of continuous rotation groups in an #u-
dimensional flat space. We then return (Sec. 4) to a
further discussion of ihg’s in a general V ,.. The classifica-
tion of Vy(++4+-+—)s is obtained (Sec. 5) from a
classification of rotation groups in a four-dimensional
flat space. Specialization to.Einstein spaces is then
discussed (Sec. 6), and, finally.(Sec. 7), the relation of
this classification to that of Petrov and the work of
Newman? is treated.

2. INFINITESIMAL-HOLONOMY GROUP FOR AN
ANALYTIC REGION RcV,

We denote by V, an n-dimensional Riemann space.
Let P be a point in an analytic region RCV,, in which
the Christoffel symbols are also analytic. Let C be a
closed curve in R which can be continuously shrunk to
a point in R and which passes through P. The vector
transformation at P which is generated by parallel
displacement (of the set of vectors at P) around C will
be a rotation. The set of all such curves C in R will
give rise to a set of rotations at P. It can be shown that
this set of rotations actually forms a connected con-
tinuous group,** the group called the infinitesimal-

1 A. Z. Petrov, Sci. Note Kazan State Univ. 114, 55 (1954).

2 E. Newman, J. Math. Phys. (to be published).

3 A. Nijenhuis, Koninkl. Ned. Akad. Wetenschap. Proc. Ser. A
56, 233, 241 (1953).

‘3%.1% Schouten, Ricci Caledus (Springer-Verlag, Berlin, 1954),
p- .

holonomy group of V., at P. It is also easily shown that
the same abstract group obtains at each point of R, so
that we may speak of the ihg of RCV ..

Since the ihg is a rotation group in the (flat) tangent
space to V, at P, it is profitable at this point to digress a
bit and discuss the properties of a general group of
rotations in an #-dimensional flat space.

3. ROTATION GROUPS IN AN n-DIMENSIONAL
FLAT SPACE

Let ¢ (k=1, ---, roman numeral #) denote a set of
coordinates in an n-dimensional flat space. Consider a
group of rotations about the origin of this coordinate
system. It is known that the group germ (that is, the
set of elements of the group which can be continuously
transformed into the identity) is also a Lie group and
will have its transformations expressible in the form

’7": eth:
(Xt
2!

=‘[1+Xt+ +-- -]E‘, 1)

where #* denotes the coordinates of the point into which
£ is rotated and X is an operator of the form

X=Ly$(3/089,° 2
the
L)u = gqu).“ =—La (3)

being components of a bivector in the space. The
infinitesimal transformation

= £x+L)‘xEXdl
= (14-Xdi) &, 4)

obtained from Eq. (1) by neglecting higher-order terms
and, for purely notational reasons, by replacing ¢ by
dt, is said to generate the set of transformations in
Eq. (1). The operator X is called the generator of the
transformations; the tensor L), is called the generating
bivector. In the remainder of this discussion, we confine
our attention solely to the group germ.

Because of the bivector character of L, the rotation

& Throughout this paper the summation convention is used with
respect to all types of indices. Bracketed indices, for example,
[eB], indicate skew-symmetrization.
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group can have at most n(z—1)/2 independent
generators [see Eq. (2)], or independent generating
bivectors [see Eq. (3)]. The number r of independent
generators is referred to as the number of parameters
of the group.® If the only element in the group is
the identity, we shall say that the group has zero
parameters.
Consider now an r-parameter group G,

0<rZn(n—1)/2.

p=1, T (5)

- a set of 7 independent generating bivectors. Then every
bivector

Denote by
L pafy

Los=CPLys (CP=const) )

will generate a one-parameter subgroup of G. Moreover,
every element of G is generated by an L,g in the form
of Eq. (6) with uniquely determined C».

The generators corresponding to Eq. (5) are

X o= Lp*e(9/989). M

From this equation and the Lie structural formulas
for continuous groups,

2X1p X=X 1 Xq— X Xp=Cpo'X:
(Cpqr=clpqlr)’

we obtain the following commutation identity for the
generating bivectors:

LpaﬁLq v anﬂL pg‘y‘: Cpqur.x'y. (9)

This relation is very important for the classification of
n-dimensional rotation groups and hence for the
classification of ihg’s. Ultimately, the classification
rests on the well-known second part of the second
theorem of Lie.

A necessary and sufficient condition that a set Lyas
(p=1, -+, 7) of r bivectors be a complete sel’ of generating
bivectors for a group (of rotations) is that the relations
in Eq. (9) hold.

4. INFINITESIMAL-HOLONOMY GROUP OF AN
ANALYTIC REGION RcV, (CONTINUED)

Since the ihg of a region RC V. is a group of rotations
at a point P, it will possess generating bivectors which
have all of the properties described in the preceding
paragraph. Moreover, these bivectors are intimately
related to the curvature tensor.**# Indeed, a complete
set of generating bivectors Lp, for the ihg spans the
same set of bivectors as do

Ratnvy VzrRatnsy * 7y Vapt - - VarRapn, - -
(@, b, x;=1, -+, 7).

)

(10)

8 For n=4, a rotation group can have at most 4(4—1)/2=six
independent generators and, hence, at most six parameters.

7 A set of bivectors [see Eq. (5)] is said to be a complete set of
generating bivectors of a group G (of rotations), if every generating
bivector of the group can be expressed in the form of Eq. (6).

8V, Hlavaty, J. Math. and Mech. 8, 285, 597 (1959); 9, 89,
453 (1960).
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The bivectors in Eq. (10) are obtained from the
curvature tensor and its derivatives by contraction over
all but the A» indices with the vectors e,* (a=1, - -+, %)
of an arbitrary ennuple. (The indices g, b, x; are merely
labeling indices for the different bivectors.) Thus, we
have

Ropys=M qaﬂqu’

and similar relations for the covariant derivatives of
R.gys. It can be shown®#:3 that MP,s=AP3L4,s and, hence,

(11)

Raﬁﬁ = hpquaﬁLq‘rﬁy

where /P? is symmetric in its indices.

One final property of an ihg which is relevant to the
classification of V’s is that of perfectness.® The ihg of
a region RCV, is called perfect if there is at least one
point PeR such that the set (R.iw)p alone spans the
entire set of generating bivectors of the group. In
other words, an ihg will be called perfect, if the bivectors
in Eq. (10) arising from the covariant derivatives are
linearly dependent on those arising from the curvature
tensor alone. An ihg which is not perfect will be called
imperfect. There will be various degrees of imperfectness
depending upon the number of linearly independent
bivectors in Eq. (10) which are given by the curvature
tensor alone, how many come from first derivatives,
etc. Clearly, from Eq. (11), a necessary and sufficient
condition for perfectness is (remember that for an
r-parameter ihg p, q=1, ---, 7)

det(£79)40 for some PeR.

In the next section we shall give a summary of the
results of a classification of groups of rotation in a
four-dimensional Minkowskian space® and shall use
these results to obtain a preliminary classification of

ihg’sin a Va(+++—).

5. CLASSIFICATION OF INFINITESIMAL-
HOLONOMY GROUPS IN Vi(++-+-)

In our classification of ihg’s of a Vi(+4+—), we
shall employ the results of another paper® which gives
a classification of groups of rotation in four-dimensional
flat spaces R, whose metric tensors have the various pos-
sible inequivalent signatures: (++++), (+++—),
(++——). We begin first, then, with a brief outline of
the method of classification of rotation groups.

A rotation group in an R4 can be at most six para-
metric, but it may also have fewer than six parameters.
Because of the commutation relations in Eq. (9), not
every arbitrarily chosen set of  bivectors [see Eq. (5)]
will be a complete set of generators of a group. Indeed,
in Ry(+-+-+—) the restriction which Eq. (9) puts on
the generating tensors is such as to exclude five-
parameter rotation groups.'® Moreover, the nature of

9 J. F. Schell (unpublished).

10 Similarly, in an R¢(4-+-++) five-parameter rotation groups
are also excluded; however, in an Ry (++ — —) five-parameter
rotation groups are possible.
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TasBLE I. Classification of rotation groups in Ry(+++—).

Number
of group Class Canonical basis for
parameters = symbol system of generators
0 Ry
R [#g]
1 R; Lpx]
R4 [xy]
R; [pg1+[xy]
Rs [rq] [px]
2 R, [pq] L[xy]
Rs [px] [py]
Ry [pa] [px] [py]
Ry [rg] [px] [gx]
3 Ru Lox] Loyl [xv]
Ruz Lex] [py] LeyI+Tog]
Ry [ey] [xz] [92]
4 Ris [rg] [px] [pyl [xy)
6 Ris [ped [px] [pyl [ex] gyl [yl

two-, three-; and four-parameter groups are restricted.
The theory of line geometry in a three-dimensional space
and its representation in the five-dimensional homoge-
neous Klein space K; 2 are employed to obtain
an exhaustive method of selecting various types of
r-parameter sets of bivectors.’® From each set we select
a basis consisting of # linearly independent bivectors
Lgos. By checking the validity of Eq. (9), those sets
which form a complete set of generators for a group of
rotations are singled out.

In K5 the various classes of rotation groups are
characterized by an algorithm which makes use of
geometrical representations (in K;) for the Levi-Civita
tensor density €.sys and for the tensor gavgss which
plays an important role in Petrov’s classification. In
the present paper, however, an equivalent but seemingly
more physical characterization by canonical bases for
the set of generating bivectors is given. A rotation
group will belong to a given class, if its generating
bivectors have a basis expressible in the canonical
form for that class. The canonical basis for the 15
different (mutually exclusive) classes of rotation groups
in an Ry(++-+-+—) are given in Table I. In this table

UYV. Hlavaty, Differential Line Geometry (P. Noordhoff,
Groningen, 1953).

V. Hlavaty, Geometry of Einstein’s Unified Field Theory
(P. Noordhoff, Groningen, 1958), Appendix ITI.

1 The homogeneous Klein space K; may be regarded as a
five-dimensional homogeneous bivector space. A point in K has
six homogeneous coordinates /4 (4 =1- - -6) and is associated with
a bivector L*¥=LI] in R, according to an arbitrarily chosen
correspondence 4 « [af] between the six indices 4 and the six
skew-symmetric index pairs [e8]=—[Ba]. The group of trans-
formations in K; (other than the homogeneous transformation
I4'=pl4 p=const) is induced by coordinate transformations in
R4, namely, a transformation

lA’ - aAA’l.i,
in K is admissible, if and only if,
a4t o QupF =01 ag) = afe 17),
where
2 =g x40

is an admissible transformation in R,.

SCHELL

the following symbolism is used : %, y* are two mutually
orthogonal spacelike real vectors; p*, ¢* are the two
null vectors orthogonal to both x%, y*; 2% is an arbitrary
real spacelike vector in the plane of p* and ¢~ and is
thus orthogonal to x%, y*; [pq] denotes the skew-
symmetric product p'*gfl, etc.

It is interesting to note that only in two classes, R;
and Ry, are we compelled to employ a general bivector
in the canonical basis.

Not all of the classes of rotation groups contain
groups which may be infinitesimal holonomy groups for
some Vi(++-+—). For, if a rotation group with a
canonical basis Ly, is an ihg for a V(4+-+4+—),
then the curvature tensor is, in some nonholonomic
frame (vierbein), expressible in the form of Eq. (11),
and must satisfy the cyclic identity

(12)

(The other algebraic symmetries are automatically
satisfied.) By using the canonical basis for class Rs, it
is easily shown that a tensor given by Eq. (11) will
satisfy Eq. (12) only if #''=0; this implies that Ragys=0
everywhere. Thus the space would be flat and the
holonomy group would consist of the identity alone
and would be of class R, contrary to assumption. All
other classes of rotation groups lead to tensors [see
Eq. (11)] which are compatible with the cyclic identity.
Nonetheless, whether each of the other classes contain
or do not contain ihg’s for some Vi(++4+4—), is, as
of this writing, still an unanswered problem.

Riapn1s=0.

6. IHG CLASSIFICATION OF (4 -+ —)-EINSTEIN
SPACES

A Vy(++4~-) whose Ricci tensor satisfies the
Einstein condition

(Rep=R,os", r=a scalar), (13)

is termed a (-++-—)-Einstein space. In this section
we outline the technique for showing that the ihg’s for
(444 —)-Einstein spaces are contained in at most
five classes of rotation groups and that empty spaces
(k=0) are contained in only four of the classes of
rotation groups.

Clearly, no Einstein space can have its ihg in class
R; since, as shown previously, there is no ihg of any
Vi(++4-+—) in this class. On the other hand, the
only Vi(4+++4—) with an ihg in class R, is flat space
(Ragys=0) and is a trivial example of an empty space.
That there can be no Einstein space with an ihg of
class Ry, k=2, 3, 4, 6, 10, 13, follows from the following
factt14:

In a nonholonomic frame (vierbein, letrad, 4-nuple)

(14)

Rog=rxgos

UL, U%y ULUY=208," (a,b=T,"',Z),
in which the matrix of the nonholonomic (physical)

14 H, S. Ruse, Proc. London Math. Soc. 50, 75 (1944).
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components of the metric tensor has the form
(8ab)= (guptss) = diag(1 1 1 —1), (15)

the (nonholonomic) components Rapca of the curvature
tensor of an Einstein space are such that

M N
(-RAB)=(N —M)’ (A)B=17“':6)x (16)

where
(1
(18)

M and N are 3)X3 symmetric matrices,
(2) trtM=« (b) trN=0,
and

A and B are composite indices representing skew-sym-
melric index pairs according to the scheme:

4 1 2 3 4 5 6
[ab] [14] [24] [(34] [23] [31] [12]

The condition (18b) is the cyclic identity of Eq. (12).
The conditions (16), (17), and (182) result from the
Einstein condition of Eq. (13).

Thus, if a given class of rotation groups contains
ihg’s for (4+-++ —)-Einstein spaces then the curvature
tensor given by Eq. (11) must satisfy the conditions
(16)-(18) in an arbitrary orthonormal nonholonomic
frame. If there is an Einstein space with ihg of class
Ry, k=1, ---) 15, its curvature tensor is given by
Eq. (11), where the L,* may be taken as the bivectors
of the canonical basis for class R (as given in Table I).
For each class, introduce the orthonormal nonholonomic
frame

(19)

A

ur =42, ur=1{
wf= (p+4)/V2, ur=(b*—¢)/V2,

where £ and §* are unit vectors in the direction of x*
and y?, and $*, §* are vectors along $* and ¢* which
satisfy the relation pog==1. It is easily shown that when
k=2, 3, 4, 6, 10, 13, condition (17) requires that all
£*P1=0 and, hence, that the space be flat space, but
then the ihg would be of class R, contrary to assump-
tion. Thus there are no Einstein spaces with ihg’s in
these classes. On the other hand, when k=7, 8, 9, 11,
12, 14, 15, the conditions (15)-(18) will be satisfied
only if the #P¢ satisfy certain conditions. These condi-
tions on %P9 are given in Table II. For completeness we
also include class R;.

From Table II it is seen that if Einstein spaces with
three-parameter holonomy groups exist (classes R,
Ry, Ryy), they are empty : k=0. The following considera-
tions will show that in fact they do not exist.

It is easy to show that an empty Einstein space with
(Rap)-rank 2 has its curvature tensor expressible in
the form

Repys=p(Pros1 P1vts) — DLy p1rye1), (20)
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TastLE II. Conditions on %P9 imposed by conditions (16)—(18).

Number
of group Rota-
param- tion
eters  class Conditions on #P9
0 R: cee x=0
2 R: M= —k2£0, i2=0, k=h140
Ry Ml=—h=
Ry
3 Ry p W= —}h2 pp=hpd=(), k=0
R12
Mo — 2 J38a= Jd 18— _ }24 = ;38
4 Ris {zza=hl4h=},u=o ! X
6 Ris  Bi= —p 2= _ 55 [B= — ;56
B2= — 5 pl3= A8 = —_ Jy56
HS=p2 pB= 16 3= j2s
MR p36 =0, k=p4 2 p3

where pa, %, Vo have the samne significance as before in
connection with Table I. Thus the bivectors [px],
[py] are two independent generating bivectors of the
ihg. Consideration of the covariant derivatives of Eq.
(20) discloses that either no more linearly independent
generating bivectors, or four such bivectors, arise from
the derivatives. Thus an empty Einstein space of
(Rap)rank #'=2 has an ihg of either two or six
parameters.

It follows from conditions (16) and (17) that the
rank 7’ of (R4g) for an Einstein space must be 0, 2, 4,
or 6. This implies that there are #’ linearly independent
rows in the matrix (R4g). The rows of (R45) will then
determine 7’ linearly independent bivectors, according
to the scheme (19). These bivectors (given by their
components in the nonholonomic frame u.*, #%) are
precisely the bivectors of Eq. (10) which come from
the curvature tensor alone and thus are linearly
independent bivector generators of the holonomy group.
Thus if an Einstein space with a three-parameter
holonomy group exists, the rank 7’ of (R4p) must be
an even number such that 0<7'<3. We conclude that
r'=2, and hence r=2 or 6, contrary to the assumption
that r=23.

7. RELATION BETWEEN THE IHG CLASSIFICATION
OF EMPTY SPACES AND THE PETROV
CLASSIFICATION

Petrov! has given a classification of (+++—)-
Einstein spaces according to the eigenbivectors of the
eigenvalue problem

Rapp L= K Log(= K gat4g016L"%).

He found three types. Type I is characterized by the
existence of six independent eigenbivectors; type II
by four independent eigenbivectors; type III by two
independent eigenbivectors. Petrov also showed that
by a suitable choice for a nonholonomic frame, the
Riemann tensor of each type assumes a characteristic
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canonical form:

Type 1.
a B1
- ay - . Bs .
= oz - : Bs
(Rap)=|g D ey i
B2 - T
Bs : © o
3 3
Z A=K, Z B:=0.
i1 i1
Type 11.
o - . B . .
a0 . . B2 o
i deto . o B2
(Run)= B . —ay . .
- B o —ayto
I B . —ay—0g
art2ay=«, f1+2B:=0
. aF0.
Type I11.
a o
o a o
Ram=|" a . -
. —a —0a
g it 1 «
a - . a
3a=«k

Table III shows the relation between the Petrov
classification of empty spaces and the ihg classification.
The concept of the perfectness of the holonomy group
was used in establishing the comparison. As demon-
strated in the preceding section, the number of generat-
ing bivectors of the ihg coming from the curvature
tensor alone is always even and is equal to the rank
of (Rap). Thus the degree of imperfectness of the
holonomy group is given by the rank of (R4p) in
comparison with the number of group parameters.
With the exception of the impossibility of an Einstein

TastE III. Relation between ihg classification of empty
spaces and the Petrov classification.

Number Rotation
of group group
parameters class (Rap) rank Petrov type
0 R 0 I
2 Rq 2 1I
4 R 4 III
6 . I II
6 Rys 4 I III
2 II
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space with a four-parameter imperfect holonomy group,
the relation between the two classifications is readily
established by the use of the canonical bases of Table I,
Eq. (11), and the Petrov canonical forms of (Rsg).
That the four-parameter imperfect case does not occur,
follows from the fact that, if such a case existed, the
(Rap)-rank would necessarily be 2, but in that event,
as demonstrated before, the number of parameters of
the holonomy group must be 2 or 6 and could not be 4.
A study of Table II discloses the following:

(a) Petrov type I spaces have either 0- or 6-
parameter ihg’s.

(b) Petrov type II spaces have either 2- or 6-
parameter ihg’s.

(c) Petrov type III spaces have 4- or 6-parameter
ihg’s and the (R4p)-rank is necessarily 4.

(d) There are no empty spaces with 1-, 3-, or 5-
parameter holonomy groups.

(e) All empty Einstein spaces with an imperfect
ihg are six parametric.

Newman? has developed the following treatment of
empty space Riemann tensors. He considers a non-
holonomic frame with base vectors £, §, 2, ¢~ (these
vectors have the same significance as in Sec. 6). From
these vectors are constructed the six bivectors [$4¢],
[3¢], [#9], (48], (4], [£§], and their quadratic
products. Among the linear combinations of such
products, 10 independent tensors are selected which
possess all the symmetries of the curvature tensor and
have vanishing “Ricci tensor.” An arbitrary curvature
tensor for empty space is then a linear combination of
these 10 tensors. The covariant derivatives of the 10
“basic curvature tensors” are computed and expressed
as linear combinations of the ‘“basic curvature tensors”
with vector coefficients. Newman also gives the form
of the curvature tensors of the three Petrov types as
linear combinations of the 10 “basic curvature tensors”;
the coefficients are just the o’s, §’s, and o’s of Petrov’s
canonical form.

It follows from this that the formalism used by
Newman and that employed in the ihg classification
are closely related. Indeed, using the forms of the
curvature tensor which Newman gives and the differen-
tial relations which he also derives, it is an easy matter
to check the validity of Table III. '
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The pattern of light signals, which was proposed before for the measurement of the curvature, is in-
vestigated in a two-dimensional manifold of constant curvature (deSitter space). The pattern consists
of light signals between two freely moving bodies, each signal being emitted when the signal from the other
body arrives. It is shown that the coordinates of the arrivals (or emissions) of the light signals can be obtained
from the coordinates of the emission of the first signal by means of projective transformations [see Eq. (18)]
which are iterates of a single such transformation. The same applies to the proper times at which these

signals are received.

PRELIMINARY REMARKS ABOUT THE
deSITTER SPACE

N connection with the measurement of the curvature
in a two-dimensional universe, the paths of light
signals between two freely moving bodies were con-
sidered in some detail.! Since the curvature is, in general,
different for different points of space time, the earlier
investigation was restricted to the case in which the
spatial distance of the two material bodies is small as
compared with the radius of curvature. This restriction
appears necessary, if one wants to assume that the
curvature is constant throughout the region in which
the measurement takes place. It may be worthwhile to
point out, nevertheless, that in a (two-dimensional)
space of constant curvature, i.e., in a two-dimensional
deSitter space, the light signals between freely moving
bodies form a simple geometric pattern, no matter
what is the state of relative motion of the two material
bodies.

The two-dimensional deSitter space can be visualized
most easily? as a hyperboloid which is embedded into
a three-dimensional space %, y, r; the equation of the
hyperboloid is

wity—ri=d, ¢y

where. a is the “radius of the universe.” It is connected
with the Riemann tensor by the equation

R0101= 2/0«2. (la)

Both the hyperboloid and the metric are invariant
with respect to linear transformations which leave the
form

F=a4y2—7? (2)

invariant. This enables one to obtain all geodesics by
transformations of a single geodesic. For reasons of
symmetry

x=a coshs, y=0, r=gasinhs, 3)
is a geodesic; others will be obtained therefrom by
transformations which leave F invariant. Furthermore,

the geodesic (3), as a whole, is invariant under the

1 E. P. Wigner, Revs. Modern Phys. 29, 255 (1957); Phys. Rev.
120, 643 (1960).

2 See, e.g., H. P. Robertson, Revs. Modern Phys. 5, 62 (1933).
See, however, footnote 4.

Lorentz transformation in % and 7,
x’' = coshxx+sinhxr

y=y @
7' = sinhxx- coshxr.

In the parametric representation (3) of this geodesic,
the transformation (4) replaces s by s+x. It then
follows that the distance of two points of (3), character-
ized by two values s; and s, of the parameter s, depends
only on the difference sy—s; of the parameters. One
infers from this that the distance of the two points of
the geodesic, measured along the geodesic, is propor-
tional to the difference of the values of the parameter s
which characterize these points. The constant of
proportionality is easily calculated to be a, so that the
distance becomes, simply, a(s2—s1).

A Lorentz transformation in y and 7 produces from
(3) the new geodesic

¥'=x=a coshs
y'=19 coshe+r sinhg= g sinh ¢ sinhs 5)
7'=1y sinh g7 coshp=a cosh¢ sinhs,

and all timelike geodesics which go through the point
x=a, y=7=0 have a parametric representation of the
form (5) with a suitable ¢. This ¢ is simply the hyper-
bolic angle between the velocities which correspond to
the geodesics (3) and (5). The distance of two points
of (5), characterized by the values s; and s; of the
parameter s, as measured along the geodesic, is still
a(s3—s1), since this distance is invariant with respect
to the transformation which led from (3) to (5).

In order to obtain a two-dimensional picture of our
deSitter space, we again suppress the variable 7. Then,
the points of the xy plane which are outside the circle

styi=a? ©)

each correspond to two points of the deSitter space.
We shall say that the xy plane outside the circle (6) has
two sheets: the %, y point of the lower sheet corresponds
to the point %, y, 7= — (a?4-y*—a?)? of the hyperboloid,
the », y point of the upper sheet to the point #, ¥,
7=+ (2>+y2—a?)? of the hyperboloid. The inside of
the circle (6) does not exist for our purposes. The
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Fi16. 1. Geodesics obtained by the Lorentz trans-
formation (4) from the geodesic y=0. The geodesics
are represented by their projections into the xy
plane. Broken line indicates the lower sheet of
plane (7<0); full line indicates the upper sheet

geodesic (3) is represented on the xy plane by the line

segment
y=0, z>a. )

The image of a material body travels on this segment
first on the lower sheet in the direction of decreasing ,
then on the upper sheet in the direction of increasing «.
The picture of the geodesic (5) in the xy plane is the
hyperbola

x'2— (y"/sinh?¢)=a?, ®)

which is traversed in the direction indicated by the
arrow in Fig. 1, starting again on the lower sheet but
passing into the upper one at the point ¢, 0. The
distance of a point x, y from the point @, 0, as measured
along the geodesic which connects the two points, is
as, where s is the parameter of the point x, y on the
geodesic (5). Since as can be expressed by x alone,

as=g arc cosh(x/¢)=a In[z+ (x*—a?)/a. (9)

The points which are at equal distance from the g, 0
point lie on straight lines parallel to the y axis. Figure 1
gives the lines which represent points at distances 0,
=+1a, +a, 30 from the point ¢, 0. The square root in
(9) must be taken with the negative sign on the lower
sheet ; the corresponding s are then also negative.

It follows from the development of the last paragraph
that the points at distance 0 from @, 0 lie on the line
which is tangent to the circle (6) at x=g, y=0. The
two light signals (our space has only one spatial
dimension) which pass through the point g, 0, travel
in opposite directions along this line, both passing at
a, 0 from the lower into the upper sheet. Their paths are
straight lines on the hyperboloid, called rulings. All
other light signals are represented on our diagram by
tangents of the circle (6); they can be obtained from
the two light signals just described by rotations in the
xy plane. All the preceding results have been established

(r>0). The proper time elapsed after the passage
through the ¢,0 point is given by as; points of con-
stant s lie on lines parallel to the y axis. Positive s
values refer to the upper sheet; negative values
refer to the lower sheet.

before and are well known; they are repeated here for
the reader’s convenience.

LIGHT SIGNALS BETWEEN TWO
MATERIAL BODIES

The world lines of two material bodies in the same
space-time plane can either intersect or not. The latter
alternative would mean, in a flat space, that they are
at rest with respect to each other—which is an excep-
tional situation. The same is not true in hyperbolic
space and two timelike geodesics can approach each
other and again separate without ever intersecting. The
geodesic (3) and any other geodesic obtained from it
by a rotation in the xy plane are in this relation. Hence,
the case of nonintersection is not an exceptional one in
the hyperbolic case. Nevertheless, only the case of
two intersecting timelike geodesics will be considered
in the present note. This will be done, partly for
reasons of space, and partly because the earlier publica-
tions! are principally concerned with nonintersecting
world lines.

The intersection of two world lines, as every point
on the hyperboloid, can be brought into the point
x=g, y=7=0 by a transformation which leaves the F
of Eq. (2) invariant. The two world lines will then have
parametric representations of the form given in (5),
with different hyperbolic angles ¢=¢; and =15 A
further transformation of the type used in (5), but
with the angle —3}{@1+¢2) will then change ¢, into
+(p1— ¢2) and ¢, into (@2~ ¢1). Denoting the former
angle by %¢, the parametric representations of the
two geodesics become

%1=2%2=a coshs
y1= —9y,=a sinh} ¢ sinhs (10)

71= 19=a cosh} ¢ sinhs.
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The transformations just carried out shift the point of
coincidence of the two bodies to the point =g, y=r=0,
and reduce the velocity of their center of mass to zero.
These transformations give the two world lines a
convenient form; they do not change any of their
invariant properties. In particular, they do not affect
relations between traveling times of light quanta
passing back and forth between them, if these traveling
times are proper times measured along the world lines
themselves.

The images of the two world lines in the xy plane
now coincide and form the hyperbola

o*—(y*/sinh?} o) =4, (11)
which is traversed, by the two bodies, in opposite
directions. Before they reach the x=a, y=0 point, both
are on the lower sheet of the xy plane; they pass at that
point into the upper sheet. The hyperbolic angle of
their relative velocity at coincidence is ¢.

The image of a light signal between the two bodies is
that segment of a tangent to the circle (6) which lies
inside the hyperbola. It is on the lower sheet of the xy
plane, if the emission takes place before the coincidence
of the two particles, i.e., if the images of the particles
are themselves on the lower sheet. In this case, the
light signal travels toward the circle. If the emission of
the light signal takes place after the coincidence of the
two particles, their image is on the upper sheet and
so is the image of the light signal which travels, in
this case, away from the circle.

Figure 2 illustrates the construction of a series of
light signals, each emitted from one of the bodies when
the previous signal, emitted by the other body, arrives.
Naturally, there must be a first light signal which initi-
ates the series. The images of these light signals form
a polygon which is circumscribed around the circle (6)
and is inscribed into the hyperbola (11). If the emission
of the first signal takes place before the two bodies
meet, the series has no end and infinitely many light
signals can be exchanged before the two bodies come
to coincidence. If the first light signal is emitted after
this coincidence, only a finite number of light signals
can be exchanged before the two bodies “recede under
each other’s horizon,” and thus lose contact. In order
to obtain the successive corners of the polygon, one has
to draw, from the corner last obtained, the tangent to
the circle which corresponds to the emission of a signal,
and bring this tangent into intersection with the other
branch of the hyperbola. The following section will
describe the properties of this polygon; in particular,
it will give an expression for the proper times at which
the successive light quanta are received.

ARRIVAL TIMES OF THE LIGHT SIGNALS

The circle and hyperbola of Fig. 2 have two pairs of
coincident points in common. They are, therefore, in

Fic. 2. Construction of light signals between two bodies
approaching each other with equal velocities. All points of the
hyperbola are on the lower sheet, i.e., all events take place before
the bodies reach the a,0 point. If the convention of Fig. 1 had been
followed, all lines would be broken. The images of light signals
are tangents to the circle; the signal emitted at O reaches the
second body at 1; the signal emitted at 1 reaches the first body
at 2, and so on.

the terminology of projective geometry,* members of a
pencil of conics, as well as members of a range of conics.
It is well known,* that there exists a one parametric
manifold of projective transformations which leave
two such conics invariant, and that the points of
coincidence are fixed points of these transformations.
In our case, the projective transformations in question

are .
x coshx—a sinhx

x'=qa
—g sinhx+a coshy
(12)
y

. 3
—x sinhx 4@ coshx

’

y=a

with an arbitrary x. Incidentally, these transformations
also leave all other conics of the pencil or range in-
variant, i.e., all conics

Wy = a?, (13)

but this is of no significance for our discussion. Note,
however, that for positive x (since x> ¢ on the hyperbola
and coshx > sinhx for all real x), the numerator of the
expression for x” will be positive. Hence, if we restrict

3 See, e.g., C. W. O’Hara and D. R. Ward, 4n Introduction to
Projective Geometry (Clarendon Press, Oxford, England, 1937),
p. 126 §.

41t is not easy to find an explicit statement of this theorem in
the literature. See, however, O. Veblen and J. W. Young, Projective
Geomeiry (Ginn and Company, Boston, Massachusetts, 1910),
Chap. X, or Figure 6.8C of H. S. M. Coxeter's The Real Projective
Plane (Cambridge University Press, Cambridge, England, 1955).
The conics of this figure are all tangent to the lines AP and AQ
at the points P and Q respectively; these points, as well as 4,
are fixed points of the transformations in question. They corre-
spond to our points (¢,0), (—a,0), (0, =). The transformations
are the products of the harmonic homologies with axis PQ and
center 4, and with axis A B and center C. The position of the point
B is the free parameter; C is the harmonic conjugate of B with
respect to P and Q. I am indebted to Dr. Coxeter for this reference.
However, no general proof of the theorem will be given since the
transformations in question are exhibited explicitly in our Eq. (12).
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ourselves to transformations which do not interchange
the two branches of the hyperbola, we must restrict x
to such values that the denominators in Eqgs. (12) are
also positive.

In addition to Eqgs. (12), the conics are evidently
invariant also under the reflections

=x y=—y (12a)
=—x y'=y (12b)
¥=—zx y=—y (12¢)

Only Eq. (12a), or rather, the combination of Egs.
(12) and (12a), will be used in what follows.

If we subject a tangent to the circle to a transforma-
tion (12) or a combination of Eqgs. (12) and (12a), the
resulting line will still be a tangent to the circle.
Furthermore, the points of intersection with the hyper-
bola will be transformed into points of intersection with
the hyperbola. Hence Eq. (12) transforms a light signal
from the first body to the second body into a similar
light signal. If we want to transform a light signal from
the first body to the second into a light signal from the
second body into the first, we must use a combination
of Egs. (12) and (12a), i.e., write

% coshx—a sinhx

x'=a
—x sinhx—+a coshy
(14)
—ay

—x sinhx+a coshx‘

U

By choosing x appropriately, the point of intersection
of the light signal with the upper branch of the hyper-
bola can be transformed into the point of intersection of
the light signal 'with the lower branch. Since this point
is the starting point of the next (responding) light signal,
Egs. (14) transform the equation of each light signal
into the equation of the next light signal. They also
transform the point of emission of each light signal into
the point of emission of the next light signal. The same
applies for the points of arrival. In fact, the whole
polygon is transformed onto itself by the transformation
(14) with the proper x.

The proper value of x remains to be determined.
This can be obtained from the condition that the
intersection of a tangent to the circle

Extny=a® (where £+n’=a?), (15)
with the transform of this tangent
x coshx— a sinhy y
ak =a? (153.)

) o .
—u« sinhy+-a coshy —x sinhx+a coshy

lie on the hyperbola (11). The point of intersection of

EUGENE P. WIGNER

the lines (15) and (15a) is
a(14+coshy) £ sinhx
P sinhy+£(1+coshy)’
an sinhy
y=a siny+£(1+4-coshx) )

With £+4n*=a?, the condition that the point (16) lie
on the hyperbola (11), reduces to

sinh?% o= % (coshx—1)

xXr==

(16)

(17)
or

(17a)

The upper sign holds on the upper sheet where the
image of the light signal moves away from the circle
so that |9'|>]|y|; the lower sign holds on the lower
sheet where the opposite is true. It would seem though
that it should be possible to obtain Eq. (17a) with less
computation than Eqs. (15)-(17) imply.

Let us denote the coordinates of the point at which
the first light signal is emitted by o, o, 70. The image
of this point on the xy plane is «,, ¥o, and the image of
the arrival point of this signal, which is also the depar-
ture point of the second signal, can be obtained by the

x==xe.

.transformation (14) with x==¢. The coordinates of

the image of the arrival point of the signal »—1, which
is also the departure point of the signal #, will be
denoted by %., ya. This can be obtained from wo, yo
by the transformation which is the »n-fold iterate of the
transformation (14), with x= = ¢. Hence,

%o coshnpFa sinhne

(18)

Xp= G
Fx, sinhnep-a coshne
(=)rayo
Yn= . (18a)
Fxo sinhno+a coshre

The corresponding 7, can be calculated from expression

(1):
arp

(18a)

Tp== .
Fxo sinhne-+a coshne

As was mentioned before, # can grow indefinitely if
the first signal is emitted before the bodies come to a
coincidence, i.e., if one is on the lower sheet of the xy
plane and uses the lower sign in Eqs. (18). The number
#» has an upper limit, if the signals are emitted after the
coincidence; %, becomes negative for larger s. The
points with even » represent arrival and departure
points at the first body; the points with odd #» refer to
events at the second body.

Finally, we calculate the proper time %, which a
clock on the first body would attribute to the nth
arrival of a signal. If the clock measures the time from
the time at which the two bodies are in coincidence, its
time will be the same as of Eq. (9). Hence,

f2n=a Ingzn, 19
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where
Gon= 0o+ (22— a®)¥]. (19a)
It foliows from Eq. (19a) that
Zan=%0(g2nt1/gen). (20)

Clearly, #;, and ¢;. mutually determine each other.
Hence, the equation

o coshnpFsinhn ¢
! 21)

Joan= "
Fqo sinhzp-4-coshne

will be established, if the x,, calculated from it by
Eq. (20) becomes equal to the expression (18) obtained
earlier. Hence, we calculate

30(g2nt1/g2n)
(go coshn gFsinhn )24 (Fgo sinhn ¢+ coshn ¢)?

1
ia
: (*F qo sinhn ¢+ coshn ¢) (go coshr o Fsinhn o)

(14-¢¢%) cosh2n¢F2go sinh2ne (22)
F1(14qo?) sinh2ne+qo cosh2ne

53

1
2

Multiplying numerator and denominator by (a/ge)
gives, since gq is so defined that Eq. (20) holds there for,

xp cosh2n o a sinh2n ¢

30(gznt1/g2m)=0 =% (22a)

Fxo sinh2n¢+a cosh2ne

This then verifies Eq. (21), and gives the rather simple
expression

€%/2 coshn pFsinhn e

ten=2aln (23)

Fet/e sinhnp+coshne

for the time of the nth event at the first body. The lower
sign applies if these events precede the coincidence of
the two bodies; the upper sign applies in the opposite
case,

It should be mentioned perhaps that the earlier!
publications, fi, #, and f; are, in the present notation,
bg—1lo, ba—1g, and fg— 14
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An argument leading from the Lorentz invariance of the
Lagrangian to the introduction of the gravitational field is pre-
sented. Utiyama’s discussion is extended by considering the
10-parameter group of inhomogeneous Lorentz transformations,
involving variation of the coordinates as well as the field variables.
It is then unnecessary to introduce @ priori curvilinear coordinates
or a Riemannian metric, and the new field variables introduced
as a consequence of the argument include the vierbein components
ki as well as the “local affine connection” A%;. The extended
transformations for which the 10 parameters become arbitrary
functions of position may be interpreted as general coordinate
transformations and rotations of the vierbein system. The free
Lagrangian for the new fields is shown to be a function of two
-covariant quantities analogous to F,, for the electromagnetic
field, and the simplest possible form is just the usual curvature

scalar density expressed in terms of A* and A%;,. This Lagrangian
is of first order in the derivatives, and is the analog for the vierbein
formalism of Palatini’s Lagrangian, In the absence of matter, it
yields the familiar equations R,,=0 for empty space, but when
matter is present there is a difference from the usual theory (first
pointed out by Weyl) which arises from the fact that 4¢;, appears
in the matter field Lagrangian, so that the equation of motion
relating A4%;, to m* is changed. In particular, this means that,
although the covariant derivative of the metric vanishes, the
affine connection I',, is nonsymmetric. The theory may be reex-
pressed in terms of the Christoffel connection, and in that case
additional terms quadratic in the “spin density” S%; appear in
the Lagrangian. These terms are almost certainly too small to
make any experimentally detectable difference to the predictions
of the usual metric theory.

1. INTRODUCTION

T has long been realized that the existence of certain
fields, notably the electromagnetic field, can be
related to invariance properties of the Lagrangian.!
Thus, if the Lagrangian is invariant under phase trans-
formations ¢ — e‘™, and if we wish to make it in-
variant under the general gauge transformations for
which X is a function of x, then it is necessary to intro-
duce a new field A4, which transforms according to
Ay —> Ay—9d,\, and to replace 4,4 in the Lagrangian by
a ‘“covariant derivative” (9,+ied,)¥. A similar argu-
ment has been applied by Yang and Mills? to isotopic
spin rotations, and in that case yields a triplet of vector
fields. It is thus an attractive idea to relate the existence
of the gravitational field to the Lorentz invariance of
the Lagrangian. Utiyama® has proposed a method
‘which leads to the introduction of 24 new field variables
A%, by considering the homogeneous Lorentz trans-
formations specified by six parameters ¢'2. However,
in order to do this it was necessary to introduce a priori
curvilinear coordinates and a set of 16 parameters /%~.
Initially, the 4* were treated as given functions of x,
but at a later stage they were regarded as field vari-
ables and interpreted as the components of a vierbein
'system in a Riemannian space. This is a rather unsatis-
factory procedure since it is the purpose of the dis-
cussion to supply an argument for introducing the
gravitational field variables, which include the metric
.as well as the affine connection. The new field variables
A7, were subsequently related to the Christoffel con-
mection I'',, in the Riemannian space, but this could
-only be done uniquely by making the ad hoc assumption

* NATO Research Fellow.

! See, for example, H. Weyl, Gruppentheorie und Quanten-
mechanik (S. Hirzel, Leipzig, 1931), 2nd ed., Chap. 2, p. 89; and
«earlier references cited there. .

2 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).

3 Ryoyu Utiyama, Phys. Rev. 101, 1597 (1956).

that the quantity I',, calculated from A%, was
symmetric.

It is the purpose of this paper to show that the
vierbein components k#, as well as the “local affine
connection” 4%, can be introduced as new field vari-
ables analogous to 4, if one considers the full 10-param-
eter group of inhomogeneous Lorentz transformations
in place of the restricted six-parameter group. This
implies that one must consider transformations of the
coordinates as well as the field variables, which will
necessitate some changes in the argument, but it also
means that only one system of coordinates is required,
and that a Riemannian metric need not be introduced
a priori. The interpretation of the theory in terms of a
Riemannian space may be made later if desired. The
starting point of the discussion is the ordinary formu-
lation of Lorentz invariance (including translational
invariance) in terms of rectangular coordinates in flat
space. We shall follow the analogy with gauge trans-
formations as far as possible, and for purposes of com-
parison we give in Sec. 2 a brief discussion of linear
transformations of the field variables. This is essentially
a summary of Utiyama’s argument, though the em-
phasis is rather different, particularly with regard to
the covariant and noncovariant conservation laws.

In Sec. 3 we discuss the invariance under Lorentz
transformations, and in Sec. 4 we extend the discussion
to the corresponding group in which the ten parameters
become arbitrary functions of position. We show that
to maintain invariance of the Lagrangian, it is necessary
to introduce 40 new variables so that a suitable cova-
riant derivative may be constructed. To make the
action integral invariant, one actually requires the
Lagrangian to be an invariant density rather than an
invariant, and one must, therefore, multiply the invariant
by a suitable (and uniquely determined) function of the
new fields. In Sec. 5 we consider the possible forms of the
free Lagrangian for the new fields. As in the case of the
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electromagnetic field, we choose the Lagrangian of
lowest degree which satisfies the invariance require-
‘ments.

The geometrical interpretation in terms of a Rieman-
nian space is discussed in Sec. 6, where we show that
the free Lagrangian we have obtained is just the usual
curvature scalar density, though expressed in terms of
an affine connection I",, which is not necessarily sym-
metric. In fact, when no matter is present it is sym-
metric as a consequence of the equations of motion, but
otherwise it has an antisymmetric part expressible in
terms of the “spin density” ©#;;. Thus there is a dif-
ference between this theory and the usual metric
theory of gravitation. This difference was first pointed
out by Weyl,* and has more recently been discussed by
Sciama.® It arises from the fact that our free Lagrangian
is of first order in the derivatives, with the 4x* and 4%/,
as independent variables. It is possible to re-express the
theory in terms of the Christoffel connection °T*,, or
its local analog %4 %, and this is done in Sec. 7. In that
case, additional terms quadratic in &#,;, and multiplied
by the gravitational constant, appear in the Lagrangian.

2. LINEAR TRANSFORMATIONS

We consider a set of field variables X4 (x), which we
regard as the elements of a column matrix x(x), with
the Lagrangian

L(x)=L{X(), X u(x)},

where X ,= d,X. We also consider linear transformations
of the form

0X=eT.X, (2.1)

where the ¢ are » constant infinitesimal parameters,
and the T, are » given matrices satisfying commutation
rules appropriate to the generators of a Lie group,

ETu, Tb:] = fachc-

The Lagrangian is invariant under these transforma-
tions if the # identities

(OL/8X) ToX+ (8L 3X ) TX ,=0, 2.2)

are satisfied, and we shall assume that this is so. Note
that 8/dx must be regarded as a row matrix. The
equations of motion imply 7 conservation laws

J#u=0,
where the “currents” are defined by®

JHhy=—(8L/0X ,)ToX.

4+ H. Weyl, Phys. Rev. 77, 699 (1950).

5D. W. Sciama, Festschrift for Infeld (Pergamon Press, New
York), to be published.

¢ We have defined J¥, with the opposite sign to that used by
Utiyama.? This is because with this choice of sign the analogous
quantity for translations is T#, rather than — T*,. The change may
be considered as a change of sign of €* and T, and there is a cor-
responding change of sign in (2.6). This convention has the addi-
tional advantage that the ‘“local affine connection” A4°%;, defined
in St;c.. 4 specifies covariant derivatives according to the same rule
asTA,,.

(2.3)
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Now, under the more general transformations of the
form (2.1), but in which the parameters e become
arbitrary functions of position, the Lagrangian is no
longer invariant, because the derivatives transform
according to

0X = eTX 4 e . T.X, (2.4)
and the terms in €2, do not cancel. In fact, one finds
0L=—e JH,.

However, one can obtain a modified Lagrangian which

is invariant by replacing X, in L by a quantity X;,

which transforms according to
X.u=eToX,,. 2.5)

To do this? it is necessary to introduce 4n new field
variables 4% whose transformation properties involve

¢ 4. In fact, if one takes
X=X+ A%T.X, (2.6)

then the condition (2.5) determines the transformation
properties of the new fields uniquely. They are

6A% =€ f?A%— € . (2.7)
In this way one obtains the invariant Lagrangian
L'{xx A%} =L{X,X,,}.
The expression X;, may be called the covariant deriva-

tive of x with respect to the transformations (2.1). One
may define covariant currents by

J'=—(3L'/04%)=— (OL/3X,)TX,  (2.8)

where L is regarded as a function of X and X;,. They
transform linearly according to

BJ’”a= - ebfbaa-]’“c,

and their covariant divergences vanish in virtue of the
equations of motion and the identities (2.2):

J’Ma;u.E ]’ua,u"'Abufbca]"‘c
=0.

Two covariant differentiations do not in general
commute. From (2.6) one finds

X;MU—X;vu=FapuTax,
where
FaquAap,u_Auu,p—fbacA b“Acw (29)

Unlike 49, the expression F¢,, is a covariant quantity
transforming according to

BF"#L.: Ebfbachl_,,,,,

and one may, therefore, define its covariant derivative
in an obvious manner. It satisfies the cyclic identity

FopotFooppt-Fop, ,=0.

7 For a full discussion, see footnote 3.
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It remains to find a free Lagrangian L, for the new
fields. Clearly Lo must be separately invariant, and it
is easy to see® that this implies that it must contain
A®, only through the covariant combination F4,, The
simplest such Lagrangian is®

Lo= —1Fe, Fom, (2.10)

where the tensor indices are raised with the flat-space
metric ##* with diagonal elements (1, —1, —1, —1),
and the index a is lowered with the metric®®

gab = facdfcdb

associated with the Lie group (except of course for a
one-parameter group). It is clear that this Lagrangian
is not unique. All that is required is that it should be
a scalar both in coordinate space and in the Lie-group
space, and one could add to it terms of higher degree
in Fe,,. However, it seems reasonable to choose the
Lagrangian of lowest degree which satisfies the in-
variance requirements, '

With the choice (2.10) of L,, the equations of motion
for the new fields are

’
Forv, y=J'%,,

Because of the antisymmetry of F,** one can define
another current which is conserved in the strict sense:

('8 7%2) =0, (2.11)
where
j”aE A bvfbcaFc“"~

This extra current j*;, may be regarded as the current
of the new field 4%, itself, since it is expressible in the
form

== (3Lo/3A4%)= — (3Lo/0A%, ) fub oA\  (2.12)

which should be compared with (2.8). Note, however,
that it is not a covariant quantity. To obtain a strict
conservation law one must sacrifice the covariance of
the current.

3. LORENTZ TRANSFORMATIONS

' ‘We now wish to consider infinitesimal variations of
both the coordinates and the field variables,

a# — /b= gr-5xk,

3.1

X(x) — X' (2") =X (x)+6X (). 3.1)
It will be convenient to allow for the possibility that
the Lagrangian may depend on x explicitly. Then,
under a variation (3.1), the change in L is

8L=(dL/3X)6X~+ (3L 0X ,)8X 4+ (OL/ dx*)ox»,

8 There could of course be a constant factor multiplying (2.10),
bu::i tIl‘xis can be absorbed by a trivial change of definition of 44,
and T,.

% The discussion here applies only to semisimple groups since
otherwl;isje gab is singular. (I am indebted to the referee for this
remark.
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where dL/dx* denotes the partial derivative with fixed
x. It is sometimes useful to consider also the variation

at a fixed value of «,
doX=X'(2) — X (%) = X — dx+X . (3.2)

In particular, it is obvious that 8, commutes with 4,

whence
X = (8X) u— (8x*) , X .. (3.3)

The action integral
Q)= f L(x)dx
2

over a space-time region € is transformed under (3.1)
into

(@)= f L(@)]|oa™|dar.
Q

Thus the action integral over an arbitrary region is
invariant if®
8L+ L(8x#) y=80L+ (Ldx*) ,=0. (3.4)

This is of course the typical transformation law of an
invariant density.

We now consider the specific case of Lorentz trans-
formations,

(3.5)

where e* and e*’= —¢*# are 10 real infinitesimal param-
eters, and the .S,, are matrices satisfying

SutSuw= 0,
[SI‘ v, mr] =N0pSuo MuoSvp— MueSp— MupS ve= %f » v‘}‘va X

From (3.3) one has

0X , =168, X u— €2 X ;.

Sxt=e v+ ¢4, SX=3}e"S,.X,

(3.6)

Moreover, since (8x*),=e*,=0, the condition (3.4)
for invariance of the action integral again reduces to
8L=0, and yields the 10 identities!

dL/dxr=L ,— (8L/ X)X ,— (0L/0X )X ,,=0, (3.7)
(8L/3%X)S poX~- (OL/8X ) (SpoX
+nﬂpx.ﬂ_77;wx,p)50- (38)

These are evidently the analogs of the identities (2.2),
and we shall assume that they are satisfied. Note that
(3.7), which express the conditions for translational
invariance, are equivalent to the requirement that L
be explicitly independent of x, as might be expected.

As before, the equations of motion may be used to
obtain 10 conservation laws which follow from these
identities, namely,

T#u=0, (Stu—x,T#+2,T#,) =0,

9 See L. Rosenfeld, Ann. Physik 5, 113 (1930).
10 Compare L. Rosenfeld, Ann. inst. Henri Poincaré 2, 25 (1931).
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where
T"pE (aL/("X,“)X,p—B“,,L, S"ME - (aL/("X_,,)SWX.

These are the conservation laws of energy, momentum,
and angular momentum.

It is instructive to examine these transformations in
terms of the variation §oX also, which in this case is

SoX= — €0, X+ %€ (Spot %0, — %,0,)X.

On comparing this with (2.1), one sees that the role of
the matrices T, is played by the differential operators
—38, and S,o+%,8,—x,9,. Thus, by analogy with the
definition (2.3) of the currents J#, one might expect
the currents in this case to be

J“pE (aL/ax.u)x.m ]"PVES“ﬂﬂ-xPJ””+x’ “e

corresponding to the parameters e, ¢, respectively.
However, in terms of 8o, the condition for invariance
(3.4) is not simply 8,L=0, and the additional term
8x*L , is responsible for the appearance of the term L ,
in the identities (3.7), and hence for the term §#,L in T4,

4. GENERALIZED LORENTZ TRANSFORMATIONS

We now turn to a consideration of the generalized
transformations (3.5) in which the parameters ¢* and
€** become arbitrary functions of position. It is more
convenient, and clearly equivalent, to regard as inde-
pendent functions e** and

=t av4¢,

since this avoids the explicit appearance of x. Moreover,
one could consider generalized transformations with
£4=0 but nonzero ¢+, so that the coordinate and field
transformations can be completely separated. In view
of this fact, it is convenient to use Latin indices for ¢/
(and for the matrices S;;), retaining the Greek ones for
£ and x*. Thus the transformations under considera-
tion are

Sxr=gr oX=1e5;X 4.1)
or

SoX= — EX 136955, 4.2)

This notation emphasizes the similarity of the e/
transformations to the linear transformations discussed
in Sec. 2. These transformations alone were considered
by Utiyama.? Evidently, the four functions £* specify
a general coordinate transformation. The geometrical
significance of the €’/ will be discussed in Sec. 6.
According to our convention, the differential operator
d, must have a Greek index. However, in the Lagrangian
function L it would be inconvenient to have two kinds
of indices, and we shall, therefore, regard L as a given
function of X and X; (no comma)," satisfying the iden-
tities (3.7) and (3.8). The original Lagrangian is then

it Note that since we are using Latin indices for S;; the various
tensor components of x must also have Latin indices, and for
spinor components the Dirac matrices must be ~v*.
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obtained by setting
X;c=5k"x,,,.

It is of course not invariant under the generalized
transformations (4.1), but we shall later obtain an
invariant expression by replacing X; by a suitable
quantity X, .
The transformation of X, is given by
Xy =565 Xyt 367 WS X— £ X,
and so the original Lagrangian transforms according to

8L=—¢r  JH,— %€ Skij

(4.3)

Note that it is J*, rather than T*, which appears here.
The reason for this is that we have not included the
extra term L(8x*) , in (3.4). The left-hand side of (3.4)
actually has the value

SLAL(5w¥) = — £ uT#,— heid Sk,

We now look for a modified Lagrangian which makes
the action integral invariant. The additional term just
mentioned is of a different kind to those previously
encountered, in that it involves L and not dL/8X;. In
particular, it includes contributions from terms in L
which do not contain derivatives. Thus it is clear that
we cannot remove it by replacing the derivative by a
suitable covariant derivative. For this reason, we shall
consider the problem in two stages. We first eliminate
the noninvariance arising from the fact that X, is not
a covariant quantity, and thus obtain an expression L’
satisfying

L=, (4.4)

Then, because the condition (3.4) for invariance of the
action integral requires the Lagrangian to be an in-
variant density rather than an invariant, we make a
further modification, replacing L' by &, which satisfies

3+ =0, (4.5)

The first part of this program can be accomplished
by replacing X, in L by a “covariant derivative” X,
which transforms according to

OX. =265 X v — %X, . (4.6)

The condition (4.4) then follows from the identities
(3.8). To do this it is necessary to introduce forty new
field variables. We consider first the €'/ transformations,

and eliminate the ¢/, term in (4.3) by setting?
Xju=X,+3A44,8:X, 4.7

where the 4%,= — A7, are 24 new field variables. We
can then impose the condition

X 1u= 395X 1u— £ uX) (4.8)
which determines the transformation properties of 47,

12 Qur A%, differs in sign from that of Utiyama.? Compare
footnote 6.
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uniquely. They are
044, = e A %I, + e A ik, — gAY, —etd (4.9)

The position with regard to the last term in (4.3) is
rather different. The term involving €/, is inhomo-
geneous in the sense that it contains X rather than X ,,
just like the second term of (2.4), but this is not true
of the last term.?® Correspondingly, the transformation
law (4.8) of X, is already homogeneous. This means
that to obtain an expression X;; transforming according
to (4.6) we should add to X;, not a term in X but rather
a term in X), itself. In other words, we can merely
multiply by a new field:

X;kEhk"xl,‘. (4:10)

Here the %:* are 16 new field variables with transforma-
tion properties determined by (4.6) to be

Shpt=E# i’ — e'chit. (4.11)

It should be noted that the fields 4* and 4%, are quite
independent and unrelated at this stage, though of
course they will be related by equations of motion.
We have now found an invariant L'. We can easily
obtain an invariant density ¥ by multiplying by a
suitable function of the fields already introduced:

¥=9L'.

Then (4.5) is satisfied provided that & is itself an
invariant density,

89+ £+,H=0.

It is easy to see that the only function of the new fields
which obeys this transformation law, and does not
involve derivatives, is

©=[det(l) T,

where the arbitrary constant factor has been chosen so
that § reduces to 1 when k* is set equal to §;».14
The final form of our modified Lagrangian is

XX b A 5} =DL{XX 4}

(We can drop the prime without risk of confusion.) It
may be asked whether this Lagrangian is unique in the
same sense as the modified Lagrangian L' of Sec. 2, and
in fact it is easy to see that it is not. The reason for this
is that if one starts with two Lagrangians L; and L,
which differ by an explicit divergence, and are therefore

18 The reason for this may be seen in terms of the variation
8ox given by (4.2). The analogs of the matrices T, are clearly —d,
and S;;, so that the presence of the derivative X, , in the last term
of (4.3) is to be expected. By analogy with (2.6) we should expect
the covariant derivative to have the form

X, k=004X, pt 34755 X — APrduX.
Because of the appearance of derivatives, the first and last terms
can be combined in the form hg#x,,, where &#=38—A#;. If we
then set A% =/;#4%, we arrive at the same form for x;; as that
obtained in the text.
4 Multiplication of the entire Lagrangian by a constant factor
is of course unimportant.
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equivalent, then the modified Lagrangians £; and £,
are not necessarily equivalent. Consider for example the
Lagrangian for a real scalar field written in its first-order
form

L1=1rk<p,k—%1rk1rk—-%m2go . (4.12)
This is equivalent to
Ly=—r* yo—intn,—imie?, (4.13)

but the corresponding modified Lagrangians differ by
U—L=(r*0);x
E“éhk“[("rk‘P) ,M+A kitﬂ"i‘P] .

which is not an explicit divergence. Thus in order to
define the modified Lagrangian ¥ completely it would
be necessary to specify which of the possible equivalent
forms of the original Lagrangian is to be chosen. The
reasons for this situation and the problem of choosing
the correct form are discussed in the Appendix.

As in Sec. 2, one may define modified “currents” in
terms of L=L{X,X;:} by

Tk, =0/ dhir=Dbi{ (OL/ X, )X, i—8%L}, (4.15)
Griy=—2(0%/84%9,)= — Dhi*(dL/9X;x)S:iX, (4.16)
where 4%, is the inverse of 4:#, satisfying
buh=5;.

To express the “conservation laws” which these currents
satisfy in a simple form, it is convenient to extend the
definition of the covariant derivative Xj, (not X;z).
Originally, it is defined for x and, therefore, by a trivial
extension for any other quantity which is invariant
under ¢* transformations, and transforms linearly under
¢' transformations. We wish to extend it to any quantity
which transforms linearly under €/ transformations, by
simply ignoring the & transformation properties alto-
gether. Thus, for example, we would have

hi”l = hi",v'— A kiuhk“,

(4.14)

bzu iv o 5“v’

(4.17)

according to the e/ transformation law of %;*. We shall
call this the e covariant derivative. Later we shall define
another covariant derivative which takes account of &+
transformations also.

One can easily calculate the commutator of two
e covariant differentiations.’® This gives

Xjpo— X =3 R*35:jX, (4.18)

where
Rij=Atjuy— A juu— Al *it AV A .
This quantity is covariant under €'/ transformations,
and satisfies the cyclic identity
R oot R jupiut R jpun=0.

16 Note that this could not be done without extending the
definition, since one must know how to treat the index on xi,.
Here, as in Sec. 2, we simply ignore it.
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It is thus closely analogous to F%,. Note that R?, is
antisymmetric in both pairs of indices.

In terms of the ¢ covariant derivative, the ‘“con-
servation laws” can be expressed in the form®

E* )t Thhir = 5S4 R,
@“,’j[,‘-: I{“hj“_ i'j“h,;“'.

(4.19)
(4.20)

5. FREE GRAVITATIONAL LAGRANGIAN

We now wish to examine the quantity X;i, rather
than X).. As before, the covariant derivative of any
quantity which transforms in a similar way to X may
be defined analogously. Now in particular X;; itself
(unlike X,) is such a quantity, and therefore without
extending the definition of covariant derivative one can
evaluate the commutator X;x—X;;. However, this
quantity is not simply obtained by multiplying
Xiuv—X|uu DY hi*h:i%, as one might expect. The reason for
this is that in evaluating X;; one differentiates the 4;*
In X;, and moreover adds an extra A4, term on account
of the index k. Thus one finds

Xim— X, =3RS X — CiaiXs, (5.1)
where
'Rijk:lE hk“hl"Rij;w, (5.2)
Chr= (hi*hi*— k" i) b o (5.3)

Note that (5.1) is not simply proportional to X, but
involves X;; also.18 :

We now look for a free Lagrangian ¥, for the new
fields. Clearly £ must be an invariant density, and if

we set
QOE @LO)

then it is easy to see, as in the case of linear transfor-
mations, that the invariant L, must be a function only
of the covariant quantities R*/;; and C¥q. As before,
there are many possible forms for &, but there is a
difference between this case and the previous one in
that all the indices on these expressions are of the same
type (unlike F2,,), and one can, therefore, contract the
upper indices with the lower. In fact, the condition that
L, be a scalar in two separate spaces is now reduced to
the condition that it be a scalar in one space. In par-
ticular, this means that there exists a linear invariant
which has no analog in the previous case, namely,

R=Rii;.

There are in addition several quadratic invariants.
However, if we again choose for Lo the form of lowest
possible degree, then we are led to the free Lagrangian'?

L=39R 54
which differs from (2.10) in being only linear in the

derivatives.

18 This is another example of the fact that for £ transformations
derivatives play the role of the matrices 7. Compare footnote 13.
17 We choose units in which k=1 (as well as c=#%=1).
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With this choice of Lagrangian, the equations of
motion for the new fields are

O(Ri* 51— 16 R) = —Ti o, (5.5)
—[Oh#h—hi*h) ]
=D (htCrij— h#Clip— hi*Chy)= Sk, (5.6)

From Eq. (5.6) one can immediately obtain a strict
conservation law

(S#i+8%;) u=0, (5.7

where

84 =DA %, (h#*hi? — hith ) — DA * o (h#he — ha?h ).
This quantity is expressible in the form

8= —2(0%/04%,)= —} (0%/04™", ) fii™ A ¥,

which is closely analogous to (2.12), and should be
compared with (4.16). Equation (5.7) is a rather sur-
prising result, since ©¢#;; may very reasonably be inter-
preted as the spin density of the matter field,!® so that
it appears to be a law of conservation of spin with no
reference to the orbital angular momentum. In fact,
however, the orbital angular momentum appears in the
corresponding ““covariant conservation law” (4.20), and
therefore part of the “spin” of the gravitational field,
8#;;, may be regarded as arising from this source.
Nevertheless, Eq. (5.7) differs from other statements
of angular momentum conservation in that the coor-
dinates do not appear explicitly.

It would also be possible to deduce from Eq. (5.5) a
strict conservation law

[hk"(zku‘*'tkn)].v: 0:

but there is a considerable amount of freedom in
choosing t*,. The most natural definition, by analogy
with (4.15) would be

tk,= 0%/ s,

(5.8)

and this quantity does indeed satisfy (5.8). However,
in this case the expression within the parentheses itself
vanishes, so that (5.8) is rather trivial. We shall not
discuss the question of the correct choice of t¥, further,
as this lies beyond the scope of the present paper.®

It should be noted that Eq. (5.6) can be solved, at
least in principle, for 4%, In the simple case when ©¢#;;
vanishes, one finds®*

Aiju="4 =305 (Crij— Cije— Cis),
cki= (h.“kj"—' hj“hi")bk v

18 See H. J. Belinfante, Physica 6, 887 (1939), and footnote 5.

191t is well known in the case of the ordinary metric theory of
gravitation that many definitions of the energy pseudotensor are
I()fgzisb)le. See, for example, P. G. Bergmann, Phys. Rev. 112, 287

20 The %A%, are Ricci’s coefficients of rotation. See for instance
V. Fock, Z. Physik 57, 261 (1929).

(5.9
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In general, if we write

Oy = DhrtS*sj,
then

Aijp="Aiju— 30" (Skij— Siji— S jus
_—'nkiksllj—nkjslil)-

If the original Lagrangian L is of first order in the
derivatives, then S*%;; is independent of 4%, so that
(5.10) is an explicit solution. Otherwise, however, 4%,
also appears on the right-hand side of this equation.

We conclude this section with a discussion of the
Lagrangian for the fields 4% introduced in Sec. 2 when
the “gravitational” fields %#;* and A4 are also intro-
duced. The fields 4%, should not be regarded merely as
components of x when dealing with Lorentz trans-
formations, since one must preserve the invariance
under the linear transformations. To find the correct
form of the Lagrangian, one should consider simul-
taneously Lorentz transformations and these linear
transformations. This can be done provided that the
matrices 7° commute with the S;;, a condition which
is always fulfilled in practice. Then one finds that X in
L should be replaced by a derivative which is covariant
under both (2.1) and (4.1), namely,

X, 1= hi* (X y+34 798X+ A%T oX).

(5.10)

The commutator X, ;;— X, ;, then contains the extra term

FaleaX7
where
FaklEhk”hl"Fayuy

with Fe,, given by (2.9). It is important to notice that
the derivatives of A%, in F?,, are ordinary derivatives,
not covariant ones. (We shall see in the next section
that the ordinary and covariant curls are not equal, be-
cause the affine connection is in general nonsymmetric.)
As before, one can see that any invariant function of 4¢,
must be a function of F%; only, and the simplest free
Lagrangian for A9, is, therefore,

—1FeF . (5.11)

6. GEOMETRICAL INTERPRETATION

Up to this point, we have not given any geometrical
significance to the transformations (4.1), or to the new
fields &:* and A%, but it is useful to do so in order to
be able to compare the theory with the more familiar
metric theory of gravitation.

Now the &* transformations are general coordinate
transformations, and according to (4.11) /;* transforms
like a contravariant vector under these transformations,
while 4%, and A%, transform like covariant vectors.
Thus the quantity

(6.1)

is a symmetric covariant tensor, and may therefore be

Zuv=0%br,
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interpreted as the metric tensor of a Riemannian space.
It is moreover invariant under the ¢/ transformations.
Evidently, the Greek indices may be regarded as world
tensor indices, and we must of course abandon for them
the convention that all indices are to be raised or
lowered with the flat-space metric ., and use g,
instead. It is easy to see that the scalar density O is
equal to (—g)}, where g=det(g,.).

Now, in view of the relation (6.1), %#* and b%, are
the contravariant and covariant components, respec-
tively, of a vierbein system in the Riemannian space.?
Thus the €'/ transformations should be interpreted as
vierbein rotations, and the Latin indices as local tensor
indices with respect to this vierbein system. The
original field x may be decomposed into local tensors
and spinors,? and from the tensors one can form corre-
sponding world tensors by multiplying by %«* or b%,.
For example, from a local vector v* one can form

(6.2)

No confusion can be caused by using the same symbol
v for the local and world vectors, since they are dis-
tinguished by the type of index, and indeed we have
already used this convention in (5.2). Note that
7= g,,v", o that (6.2) is consistent with the choice of
metric (6.1). We shall frequently use this convention
of associating world tensors with given local tensors
without explicit mention on each occasion.

The field 4¢;, may reasonably be called a “local affine
connection” with respect to the vierbein system, since
it specifies the covariant derivatives of local tensors or
spinors.? For a local vector, this takes the form

vh= Rt v,= b,

v, =0 ;A4 %07 (6.3)

It may be noticed that the relation (4.10) between
X, and X; is of the same type as (6.2) and could be
written simply as

vi1v=10;,,—A%0:.

Xp=X|u (6.4)

according to our convention. However, we shall retain
the use of two separate symbols because we wish to
extend the definition of covariant derivative in a differ-
ent way to that of Sec. 4. It seems natural to define the
covariant derivative of a world tensor in terms of the
covariant derivative of the associated local tensor.
Thus, for instance, to define the covariant derivatives
of the world vectors (6.2) one would form the world
tensors corresponding to (6.3). This gives

1))‘; uEhi)\vih’: v)‘,u+rxnu7)“,

Ve =000, = 0y = P)\Mvv)‘y
where
T =k b= —bik?.. (6.5)
Note that this definition of I'%,, is equivalent to the
2 See for instance H. Weyl, Z. Physik 56, 330 (1929).

2 H. J. Belinfante, Physica 7, 305 (1940).
2 Compare J. A. Schouten, J. Math. and Phys. 10, 239 (1931).
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requirement that the covariant derivatives of the
vierbein components should vanish,

k=0, by, =0. (6.6)

For a generic quantity a transforming according to

ba=13€"S; 0+ 8 ke, (6.7
the covariant derivative is defined by?
a; uEa,v+%A ijsz'ja+ I‘)‘,.'.,E)“‘a, (6.8)

whereas the ¢ covariant derivative defined in Sec. 4 is
obtained by simply omitting the last term of (6.8).
Note that the two derivatives are equal for purely local
tensors or spinors, but not otherwise. One easily finds
that the commutator of two covariant differentiations
is given by

Qpy ™ Qo™= %R“uv ,'ja+R”,,..,Ep"a— C)\uva;b

where Rf,,, and C%,, are defined in the usual way in
terms of R'j, and C%;. They are both world tensors,
and can easily be expressed in terms of I',,, in the form?4

Rpww= Fptm,u_ vav,u—I‘p)\pr)\au'*'rlp)‘vrxaw (6~9)
C)‘pv': I‘)\MU_I‘)\II‘L- (6.10)

Thus one sees that Re,,, is just the Riemann tensor
formed from the affine connection I'?,,.
From (6.6) it follows that

(6.11)

so that it is consistent to interpret I'\,, as an affine con-
nection in the Riemannian space. However, the de-
finition (6.5) evidently does not guarantee that it is
symmetric, so that in general it is not the Christoffel
connection. The curvature scalar R has the usual form

R= R“p, Rqu R)‘n)\u,

so that the free gravitational Lagrangian is just the
usual one except for the nonsymmetry of T'%,,. It should
be remarked that it would be incorrect to treat the 64
components of I'Y,, as independent variables, since
there are only 24 components of 4%/, In fact the T'*,,
are restricted by the 40 identities (6.11). Thus there is
no contradiction with the well-known fact that the
first-order Palatini Lagrangian with nonsymmetric ',
does not yield (6.11) as equations of motion.?®

The equations of motion (5.5) and (5.6) can be
rewritten in the form

@(Ruv_%g;wR)z —Iyuy (612)
HCN,,= G, ,— 100, Cr,,— 162, &0, (6.13)

From Egs. (6.10) and (6.13) one sees that in the absence
of matter the affine connection I',, is symmetric, and

&uis=0,

2 This is a generalization to nonsymmetric affinities of the
result proved in the appendix to footnote 3. See also footnotes 4
and 5.

25 See for instance E. Schrédinger, Space-time Structure (Cam-
bridge University Press, New York, 1950).
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therefore equal to the Christoffel connection °T?,,.
(This is the analog for world tensors of °4%;,.) Then R,,
is symmetric, and Eq. (6.12) yields Einstein’s familiar
equations for empty space,

R,,=0.

However, when matter is present, I'*,, is no longer
symmetric, and its antisymmetric part is given by
(6.13). Then the tensor R,, is also nonsymmetric, and
correspondingly the energy tensor density &, is in
general nonsymmetric, because /%x* does not appear in
¢ only through the symmetric combination g*. Thus
the theory differs slightly from the usual one, in a way
first noted by Weyl.* In the following section, we shall
investigate this difference in more detail.®

Finally, we can rewrite the covariant conservation
laws in terms of world tensors. It is convenient to define
the contraction

C,=Cha,

since the covariant divergence of a vector density f*
is then

f";u= f" .u+cuf"‘
The conservation laws become
T o= CT+CH T = 3R, SV,
Sy = CuS#0e=T ps— L.

It may be noticed that these are slightly more com-
plicated than the expressions in terms of the e covariant
derivative.

(6.14)

7. COMPARISON WITH METRIC THEORY

For simplicity, we shall assume in this section that L
is only of first order in the derivatives, so that (5.10)
is an explicit solution for 4%,. The difference between
the theory presented here and the usual one arises
because we are using a Lagrangian ¥, of first order, in
which /z* and 4%, are independent variables. The situ-
ation is entirely analogous to that which obtains for
any theory with ‘“derivative” interaction. In first-order
form, the “momenta” A%/, are not just equal to deri-
vatives of the “coordinates” %i*, or in other words to
94i5,. Thus an interaction which appears simple in
first-order form will be more complicated if a second-
order Lagrangian is used, and vice versa.

The second-order form of the Lagrangian may be
obtained by substituting for 4%}, the expression (5.10).
This gives

/= R4-9-+18,

where °2 and °Q, are obtained from € and ¥, by replacing
A#, by °4%, (or equivalently I, by °T,), and ' is
an additional term quadratic in S*;;, namely,

1R= 31 (2 1S — S SHE4-284,5;%).  (7.1)

In this Lagrangian, only %x* and X are treated as inde-
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pendent variables. The equations of motion are equi-
valent to those previously obtained if the variables 44,
are eliminated from the latter by using (5.10).

The usual metric theory, on the other hand, is given
by the Lagrangian

=018,

without the extra terms (7.1). If this Lagrangian were
written in a first-order form by introducing additional
independent variables 4%/, then one would arrive at a
form identical to the one given here except for the
appearance of extra terms equal to (7.1) with a negative
sign.

Thus we see that the only difference between the two
theories is the presence or absence of these “direct-
interaction” terms. Now if we had not set x=1, then ¥,
would have a factor ', whereas the terms (7.1) would
appear with the factor . They are, therefore, extremely
small in comparison to other interaction terms. In par-
ticular, for a Dirac field, they would be proportional to
(see Appendix)

K‘;’Y kY s‘ﬁ‘/-"y Eyg.

Thus they are similar in form to the Fermi interaction
terms, but much smaller in magnitude, so that it seems
impossible that they would lead to any observable
difference between the predictions of the two theories.
Hence we must conclude that for all practical purposes
the theory presented here is equivalent to the usual one.
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APPENDIX

In this appendix we shall discuss the remaining
ambiguity in the modified Lagrangian. It was pointed
out in Sec. 4 that the generally covariant Lagrangians
obtained from two equivalent Lagrangians L; and L,
are in general inequivalent. One can now see that in fact
they differ by a covariant divergence. Thus (4.14) can
be written in the form

U—= (@hkﬂ"rk ?’);m

but in view of (6.14) this is not equal to the ordinary
divergence. It is clear that quite generally changing L
by a divergence must change & by the covariant di-
vergence of a quantity which is a vector density under
coordinate transformations, and invariant under all
other transformations. This is the reason for the dif-
ference between this case and that of the linear trans-
formations of Sec. 2.

We now wish to investigate the possibility of choosing
a criterion which will select a particular form of L, and
thus specify & completely. There does not seem to be
any really compelling reason for one choice rather than
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another, but.there are plausible arguments for a par-
ticular choice.

The most obvious criterion would be to require that
the Lagrangian should be written in the symmetrized
first-order form suggested by Schwinger,? which in the
case of the scalar field discussed in Sec. 4 is

L=%(Li+Ly).

This corresponds to treating ¢ and #* on a symmetrical
footing. However, this may not in fact be the correct
choice, because for some purposes ¢ and w* should not
bé treated in this way. In fact, the two Lagrangians
differ in one important respect: £ is independent of
A%, whereas ¥ is not. Correspondingly, for Li the
quantity .S*;; vanishes, whereas for L, one finds

Skij= (@kmj— 8k mi)e.

The conservation laws in the two cases are of course the
same, because the quantities T'%; also differ. Now the
tensor S%; has often been interpreted as the spin
density,'® so that the two cases differ with regard to the
separation of the total angular momentum into orbital
and spin terms. The scalar field is normally regarded as
a field of spinless particles, so that one would naturally
expect S*;; to vanish. This, therefore, furnishes a possible
criterion, which would select L, rather than L,. With
this choice, a preferred position is assigned to the
“wave function” ¢ rather than the ‘“momenta’ #*, and
the derivatives are written on ¢ only. In this way one
achieves a vanishing spin tensor, because the matrices
S;; are zero for the scalar field ¢, but not for the vector
w*. It may be noticed that L; is automatically selected
if one writes the Lagrangian in its second-order form
in terms of ¢ only:

Li'=%¢kp*—3m'¢,
which yields the modified Lagrangian

&= %‘g,j (g“u‘P,Ma,v_mzﬁaz),

equivalent to .27 This should be contrasted with the
second-order form of &, which is

&= %‘@—1 (@hi" 99):;4 (@h We)iv— %@mz‘ﬁ’

and clearly differs from &’ by a covariant divergence.

This seems to be a resonable criterion, but the argu-
ments for it cannot be regarded as conclusive. For,
although it is true that the spin tensor obtained from
L, is nonzero, it is still true that the three space-space
components of the total spin

S,-,-=fd3x SO’,],

are zero. Thus L; and L, differ only in the values of the

26 J, Schwinger, Phys. Rev. 91, 713 (1953).
7 Here &, is a “linearization” of & in the sense of T.¥W. B.
Kibble and J. C. Polkinghorne, Nuovo cimento 8, 74 (1958).
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spin part of the (0z) components of angular momentum.
Indeed, one easily sees that it is true in general that
adding a divergence to L will change only the (07)
components of 8;;. Since it is not at all clear what sig-
nificance should be attached to the separation of these
components into “orbital” and “spin” terms, it might
be questioned whether one should expect the spin
terms to vanish even for a spinless particle. Even so,
the choice of L; seems in this case to be the most reason-
able.

For a field of spin 1, the corresponding choice would be

Li=—3f%(a:,;—a;:)+if"fitimian’,
which is again equivalent to the choice of the second-
order Lagrangian in terms of a; only. It yields
Skij=aifi*—a;fi

which is a reasonable definition of the spin density.?
The modified Lagrangian may be expressed in terms of
the world vector g, as :

2= —%'@g“pgw(an:u*avm) (@003 5)
+31Dm*gra,a,. (A1)

It should be noticed that the electromagnetic Lagrangian
is not obtained simply by putting m=0 in (A.1). The
difference is that the derivatives in (A.1) are covariant
derivatives, and since I\, is nonsymmetric the covari-
ant curl is not equal to the ordinary curl (though both

28 Compare footnote 18.
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are of course tensors). In fact, (A.1) with m»=0 would
not be gauge invariant. The reason for the difference
is that g; is here treated simply as a component of x,
whereas 4, is introduced along with the gravitational

" variables to ensure gauge invariance.?®

For a spinor field ¢, symmetry between ¢ and ¢
appears to demand that one should choose the sym-
metrized Lagrangian '

L=3(Piv ™y p— VY atv™y) —myp,

which yields the spin density

Skii=Seriibiviysy.
Since the Lagrangian € must be Hermitian, one could
not write the derivative on ¢ alone. There remains,
however, another possible choice: We could introduce
a distinction between the left- and right-handed com-
ponents, ¥, =%(124ys)y, treating one of them line ¢
and the other like #*. This gives the Lagrangian

L=3div*(14-ivsW o— 307 (1 — sy —miy.

This form of Lagrangian may seem rather unnatural,
but it should be mentioned because there are other
grounds for treating ¥, and ¥_ on a nonsymmetrical
footing.®

# This has the rather strange consequence that for the electro-
magnetic field the “spin” tensor S*;; vanishes, since the Lagran-
gian is independent of 4%,.

( ngt)ae R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
1958).
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The solution of the initial value problem for Bogoliubov’s functional differential equation of nonequi-
librium statistical mechanics is obtained. This solution is then expanded in an infinite power series in the
density which has the advantage that the calculation of the leading terms requires the solution of s-body
problems only for small values of s. A derivation of the equilibrium equations by reduction from the non-
equilibrium equation is included. These results are applied to obtain a simple derivation of the Boltzmann

equation.

1. INTRODUCTION

HE statistical mechanical treatment of a classical
many-body system usually begins with an
“n-particle function” D, which is the solution of an
initial value problem for Liouville’s equation. There
are, however, two major difficulties with this approach:

1. In the problems of interest the solution of
Liouville’s equation is equivalent to the solution of an
n-body problem where # is very large, and is therefore
not practical.

2. The initial conditions are, in general, unknown.

In an attempt to circumvent these difficulties, one
introduces “s-particle density functions” F, defined by
appropriate integrals of D.,.. Bogoliubov has shown? that
for these functions, the Liouville equation can be
replaced by a functional differential equation for a
generating functional L[#] which generates the
functions F,, and has obtained an expansion of the
solution of the equation to first order in the density.

In Sec. 2 of this paper we derive the functional differ-
ential equation by a slight variation of Bogoliubov’s
method. The resulting Eq. (20) differs slightly from,
but is equivalent to, the equation of Bogoliubov; how-
ever, the form of Eq. (20) facilitates a new method of
solution.

Section 3 contains the main result of this paper. In
that section we obtain the solution of the initial value
problem for Eq. (20) by a method similar to the
method devised by B. Zumino? for the equilibrium case.
The solution is then expanded in an infinite power
series in the density. In this form, it has the advantage
that for small densities it may be approximated by a
few terms of the expansion. Then to obtain an explicit
expression for F, where s is small, only certain %-body

* The research in this paper was supported by the U. S. Air
Force under a contract monitored by the AF Office of Scientific
Research of the Air Research and Development Command.

1(a) N. N. Bogoliubov, Problems of a Dynamical Theory in
Statistical Physics (translated from Russian by E. K. Gora), Geo-
physics Research Dictorate, ASTIA Document No. AD-213317.
Copies may be obtained by writing to the translator. (b) Much of
the material in this reference appears in J. Phys. (U.S.S.R.) 10, 257,
265 (1946).

?B. Zumino, Phys. Fluids 2, 20 (1959); also see New York
University Institute of Mathematical Sciences, Division of EM
Research, Rept. No. HT-1.

problems, where k is small, need to be solved. Further-
more, only the initial data for certain functions Fj,
where 7 is small, are required. If these data are known,
our expansion circumvents both of the difficulties
enumerated previously.

Sections 4 and 5 are included for the sake of com-
pleteness. In Sec. 4 we carry out a suggestion of Zumino
and derive the functional differential equation for the
equilibrium case by reduction from the nonequilibrium
equation. In Sec. 5 we solve the equilibrium equation
by a slight simplification of Zumino’s method. Section
6 is an application of the expansion obtained in Sec. 3.
That expansion is used to obtain a very simple deriva-
tion of the Boltzmann equation.

2. DERIVATION OF THE FUNCTIONAL
DIFFERENTIAL EQUATION
We consider a classical mechanical system of =
identical monatomic particles contained in a finite
volume, V. The dynamical state of the jth particle is
described by the 6 component vector

Xi= (q1;1’i)= (‘1:‘1,9:2,91'3,%1;1712,?:'3);
where the ¢;* are the Cartesian coordinates of the
particle, and the p;* are the conjugate momenta. x; is
a point in the phase-space Qy defined by the restriction
that ¢;is a point in the finite volume V. The Hamiltonian
of the system is given by

Scn:‘i k(xi)+Uﬂ) (1)
h(x)) =T (p:)+uv(gs), (2)
U= L ¢(lgi—gil), 3)
1<i<i<n
P& 3 (P
i) =—= , 4
Tz 2m aZ'=1 2m @

where m denotes the mass of a particle, ¢ is the inter-
particle potential, and %y (g;) is the potential due to the
containing boundary. Thus uy(g) is constant inside V
and rapidly approaches infinity at the boundary.

The statistical-mechanical behavior of the system is
described by the #u-particle “probability density”
function, D,(¢xy," - -,x,) which is symmetric in the
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variables (x,,- - -,%,), is normalized by the condition,

D.dx,- - -dx.=1, 5)
av

and is a solution of Liouville’s equation,

aD, » 3 (03C,dD, 083C,8D,
_""—'—Eﬁcn;Dn_-]:Z Z‘ l' 6)
ot dg:* 9p= 9P Ig*

i=1 a=1

Let S: denote the solution operator of the #n-par-
ticle mechanical system, i.e., if the system at time
1=0 is represented by the state {xy,---,x,}, at time ¢
it will be represented by the state {x,,---x.'}
=85,{x,," - - ,%,}. Under suitable conditions, the solu-
tion operator exists, but of course cannot be calculated
explicitly except when # is very small. If g is a function
of (7,%1,"* *,%x4x) it is convenient to define S,™g by
the equation

S’(")g(77xl) e 7x7l+k)
=g(7'15!("){x1>' . '1xﬂ}’ LZ RN Pl '7:"7"+k)'3 (7)
In terms of the solution operator, one may express
the solution of the initial value problem for Liouville’s
equation in the form
D,,(t,xl,- - -,x,.)=S_z(")Dn(0,x1;' : ';xn)' (8)

However, since S_;™ cannot be calculated, and since
D, (0,x,,- -+ ,x,) is in general unknown, the solution
[Eq. (8)] is of no practical value.

We introduce the s-particle density functions
Fou st %1, - -x) =V | Du(tx1,- - -, %0)d%s11" - *d%n;
v 9)

5=0,1,2, --.

It follows that F,,, is symmetric in (%1, * - ,%s), Fro=1,
and

1
f —‘_Fn,,gdxl- . -dx‘?= Dndxl' . dxn=1;
av V* av
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We now set v=V/n and introduce the functional
Ln[t’“:l:f Dy(t,x1," « - %)
v
XTI [14vu(x:)]dxs- - -dxa, (11)
=1

which is defined on the domain of functions %(x) for
which the integral converges. By functional differen-
tiation! we obtain

é°L, von!

ou(xy)- - -Gu(x,)z (n—s)! Jar

Dn(trxlr ot )xn)

X f[ [1+vu(x¢)]dx.+1'”dxn; (12)

i=stl
s=0,1,2, -+, m;
8°Ln

du(xy)- - -du(x,)

n!
= Fﬂ.s(t)xly' * ')xs) )
ump 0 (n—s)!

§s=0,1,2, - n

(13)

With the aid of Eq. (13), L, may now be expressed
as a (finite) series expansion around #=0:

» 1 1 s—1
L.[tu]=143 — 1__.)...(1___)
s=1 §! n n

X Fo o (tx,- x)u(x1) - -u(x,)dxy - - - dx,.

Qv

(14)

A differential equation for L. may be obtained by
multiplying Eq. (6) by

11 [1-+ou(z)],

1=l

and integrating with respect to %, -
obtain

-+, xn over Qy. We

s=1,2---. (10)
oL, = n
—_—=3 f [1+vu(xk)]{h(xk) 1 DL TT [1+vu(x:)] }dxl- - dxy,
o k=1 Jgy i=1
ik
+ X
1<r<s<n

By making use of the symmetry of D, Eq. (15) becomes

I [1+vu<x,>1[1+w<xs>3{¢<Jq;—qsf>; Do 1L [t+oute)] }dx din. (15)

st 7,

oL, n
—(%—:n [1‘}-'0%(5\6‘1)]{ h(xl) H D, H [1+w(x,):|dx2 cedxp ldxl
Qv =2

Qv

_1 n
) f [1+W(x1)][1+1’“(xz)]{d’(iQI-Qzl)? f D, H (1+ou(x;) Jdes: - -dxa }dxldxz (16)
oy JQy =3
_1 . oL, 1 i+ ' 8L, ]d p
_;LV[ +vu(xl)](h(x1),au ) }dxl_’"z;{ o REEZIENR vu(xz):]{d’(lm qZI)yﬁu(xl)Bu(xg) %1d%s.

3 Thus S, acts on the first » of the variables x; appearing in g.

4 V. Volterra, Theory of Functionals (Blackie and Son, Limited, London, England, 1931).
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Wenow let # — o and V — « in Egs. (14) and (16)
in such a way that v=1V/x is finite. If we set

Lt ]= lim L.[tu], an
Vow
then from Eq. (14)
w 1
LEt,u]=1+Z —T Ft(trxl)' * '1x5)
s=1 sl
Xu(xy) - - -u(x,)day- - -dx,. . (18)
Here .
F,(t,21, -+ %)= lim Fy (¢,%1, - - ,%.). (19)
Vo
From Eq. (16)
S [ [+ ro0s
a win v] b ’Bu(xl)] "
1 1
+3 f [u(x1)+—][u(xz)+—]
v v
[6tama — 2 ina, @0
X —q2l)y————— .
ol 89 (21)du(x2) e
It follows from Eq. (18) that
Fult )= (2
A t’x ) ) = ——————
' S (1) « - -0u(x,) | umo

Equation (20) is the functional differential equation
which we shall solve in the next section. The solution L
is called the “generating functional” because it gener-
ates the functions F, by means of Eq. (21). We have
derived Eq. (20) by the method of Bogoliubov! with a
slight modification, and our equation apparently differs
slightly from the corresponding Eq. (7.9) of Bogoliubov.
However, the difference is only apparent. The two
equations can be shown to be equivalent, and it will
be seen that our form is more suggestive of how to
proceed in solving the equation.

By applying the operator

5
ou (xl) o 6u(xa)

u=0

to Eq. (20) one can obtain the infinite system of
“hierarchy’’ equations

oF, 1
—=|:H.;F.]+— [ 2 ¢(|q.~—q.+1|);F.+1:|dx&1;
at ? 1<i<s

s=1,2,---, (22)
where
Ha=z T(?i)+Ux; U= Z 4’(1(]1—(1:]);
=1 1<i<i<s
§=1,2,3,---. (23)
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The system (22) is equivalent to the single equation
(20).

3. SOLUTION OF THE FUNCTIONAL
DIFFERENTIAL EQUATION

In order to solve Eq. (20) we begin by examining the
case of zero density, 1/9=0. We shall use superscripts
“0” to denote this case. Thus®
w 1
Lo[t:w]= 1+2 '_—‘ Fso(t:xh te ,x,)

=1 §!

Xw(xy)- - -w(x:)dxy- - -dx,, (24)

%L;_ f w<x1>[:r(p1);—6—f°—)]dx1—% [ wle)i(en)

dw X1
) S0
X[tﬁ - ;—*—,—'—]dx dxy=0, (25)
(lg1~—ge]) PUPRRPIRS i
F( ) ik (26)
A t’x,...,x‘ = R
P () - -8 () o
and Eq. (22) reduces to
oFp®
=[H,;FY]; s=1,2,---. @27
ot

The solution of Eq. (27) is immediately obtained in
terms of the solution operator S, corresponding to
the Hamiltonian, H,. It is given by

F,"(t,xl, st ,x,)=S_t<‘)F,"(0,x1, ot :xl);

s=1,2, ---. (28)

On inserting this expression in Eq. (24) we obtain the
solution of Eq. (25) subject to the initial conditions

w 1
LOEO,ZU]= 1+3 — F,“(O,xl, e :xC)

s=1§!

Xw(x1): - wlxs)dxy- - -dx,, (29)
where the F2(0,xy, - -,%,) are the given initial data.

In order to solve the general equation (20), we observe
that the form of the latter suggests that we try a
solution of the form

Lt =L tw]; wx)=u(x)4 (1/v). (30)
Then
oL _ o8L0 8L _ 02L°
sulxy) dw(xy) u(x)du(xs) dw(xy)dw(xs),
oL AL
a ot

and inserting in Eq. (20) we see at once that that

5 It is convenient now to denote the arbitrary testing functions
by w instead of .
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equation is satisfied by virtue of the fact that L° satisfies
Eq. (25).

But Eq. (20) must be solved subject to the initial
conditions

L[0u]=L[u]= 1+Z

=1 s

Xu(x)- -

F (O X1y ’xl)

-%(x,)dxy- - -dx,. (31)

The functions F,(0,x4, - + ,x,) are the given initial data.
In terms of Eq. (30) this becomes

L0w]=g[u]; uw=w—(1/2).

The main result of this paper is the general solution
of Eq. (20) defined by Eq. (30). If L9,w]is the solution
of the initial value problem for Eq. (25) with initial
conditions presented in Eq. (32), then L[ u] is the
solution of the initial value problem for the general
equation (20) with initial conditions presented in Eq.
(31).

The method we have used in obtaining this solution
closely resembles the method devised by Zumino? to
solve the corresponding functional differential equation
for the equilibrium case. This is discussed in Sec. 5.

We now proceed to obtain expansions of the functions
F,(tx1, - - ,x,) in powers of the density, 1/2. For this
purpose it is convenient to introduce a functional of two
variables®

(32)

OLtwal=145 — [s o
L, w — -
k=1 k! t du(xy) - - -du(x)
Xw(xl) . -w(xk)dxl- . -dx;,. (33)
Now from Egs. (24) and (32)
0L 0w
F[;O(O,xl, cee ’xk) =#
Sw(x1) - - -dw(%x) fwmo
Sk L
du(xy)- - -oulxy) u=—1/17.
Hence from Eq. (28)
© 1
Q[t;“:w] = 1+Z - Fko(t:xh " 'xk)
u=1/v k=1 k!
Xw(xy) - - w(xx)dx:- - - der=LTtw]. (34)
From Egs. (21), (30), and (34)
8L tw
Fl(t)xly' : "xt) = [ ]
6@(xl) oo 0w (%s) jwe1/v
68
= ¢ (35)
570(901) .. '570(953) w=1/9,u=—1/v

8 This functional is needed in the analysis in order to avoid
expressions involving divergent integrals.
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Now, from'Eq. (33)
8 o i+ g
—BQ_.__.=Z . S_ (7+8). 8
dw(xy)- - -dw(x,) =0 4! du (1) - 0% (% ips)
Xw(Zep1) " - W(Fer)0%ut1” + - d2ayj,  (36)
and from Eq. (31)
L EaaXe d
=2 — | Farirs(021, * * Znista)
Su(xy)- - -0u(x;ps) »=om!
X (®jrar1) U (Xirorn)@ipair - ipopn.  (37)

We now insert Eq. (37) in Eq. (36); the resulting
double series can be rearranged and evaluated for
u=—w. We obtain

8°Q
dw(x1) - - 0w (%) | umw
5 & (=1
=L T [ SO, )
k=0 =0 j1(k—7)!
Xw(x,+1) .. -‘w(x.+k)dx.+1- . -dx,+,,.

In this integral we introduce the transformation
’
Ko 1=S_tO%sarty * * Fapk =S Vs’

We then interchange integration and summation over
the index 7, and set w=1/v. The result is

N T
F (4,1, « + %5) =3 (_) fl:z — T (9
= \o/ J 155 1= !

XFk-{-r(O,xl,‘ ot ,xk+a)]dxa+1' c-dxopr, (38)

s=1,2, -
where the operator T,(® is defined by

’xH-m) =g(z,S,(‘){x1,- . ')xﬂ}y
S:(1>x.+1,' . .’S‘(l)x‘_’_m)_

Tt(B)g(z’xl’. .
(39

This is our expansion of F, as a power series in the
density.

In order to check the results, one can show in a
straightforward manner that Eq. (38) satisfies the
system of Egs. (22). To verify that the initial conditions
are satisfied, we may set =0 in Eq. (38). Since T,*) is
the identity operator, the integrand in Eq. (38) reduces
to

(— 1)
;xk+8)z

Frs (0,21, -
e = jlk= )1
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But

(D 1

e 110—1-_1 170__
i) H ])( TR

for £=1,2, ---. (40)
Thus every term in Eq. (38) vanishes, except the first,
and the series reduces to F,(0,xy;- -,%,) as required.

The series expansion (38) is a very useful form of the
solution. We observe that for small densities (1/9<1),
the function F, is approximated by terminating the
series after a few terms. Now the functions F, of main
interest are those for which s is small, and for these
functions, the calculation of the leading terms of the
expansion requires a knowledge only of solution
operators S, where k£ is small and initial data
F;(0,xy,- - - ,x;) where 7 is small.

The leading terms of Eq. (38) are given by

Fs(t;xh' T ;xs) = T—t(s)FS(O;xlr' o rxs)
1
+" fl:T—i(8+l)F8+1(0>x17 e :x8+1)
v
ar1) J8%501+0(1/%).  (41)

Bogoliubov! obtains the equation

— T OF1(0,5,- - -

Fs(t X1, x,)=5_z(’)Fs(0,x1,' o 1xs)
t
+- f{ — t(a)f[ > d’(lqi"qaﬂl);s—f(.ﬂ)
vy 1<i<s

XFo11(0,21, -+ + Xss1) 1261 }dr—l—O(l/v?). (42)

With a little manipulation it is possible to reduce Eq.
(42) to the simpler form of Eq. (41).

4. DERIVATION OF THE EQUILIBRIUM EQUATION

In this section we shall derive the well-known func-
tional differential equation for the equilibrium case by
reduction from the general equation (20). The first
step is to derive a new form of Eq. (20) by expanding
the Poisson brackets that appear in that equation [as
is done in Eq. (6)] and by using the following identity
which isobtained by interchanging integration variables:

J ["(xl”ﬂ[“(xzﬁ ]ﬂ%ﬁ?‘_)

d 8L
dp2® du(x1)ou(xs)

-/ [”(x‘)+;][u( D+ ]fﬂg;ﬂ

a &#L
X -
Ap1® du(x1)du(xs)

dxrdxs

(43)

dxldxg.
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With the aid of Eq. (43), Eq. (20) now becomes

aL 3 1 oL

ol B | EON e
a 1—¢2

+f[u(x1)+ ][u(x2)+ JM

o

a 6L
X dxldle. (44)
1 b (21)du(xz)

Let us now consider time-independent solutions

w 1
Llu]=1+3 = Fo(x1, - - )u(@y) - - -
s=1 gl
Xu(x,)dxy- - -dx,.  (45)
Then 3L/3t=0, and Eq. (44) will be satisfied if
3 1 d
) {——P1 +f[u(x2)+ ]
a=tl m g% du(xy)
a a 8L
y ¢ ([g1—¢:|) 2}=0' 46)
aql"‘ aﬁl 6u(x1)8u(x2)

This equation is an identity in ;= (g1,p1). It is suf-
ficient for Eq. (44), but not necessary.

Following a suggestion of Zumino,? let us now
consider solutions of Eq. (46) for which

Fx(xl) v ',.’JC,)

1
=c* eXp[_—[P12+ ot +Ps2]]f8 (qu U 1q8)7 (47)
2mb
where 6 is a constant and

- f exp[— §*/2m8dp. (48)

Let (L)[#] denote the restriction of L[ %] to the domain
of functions »=u(g) which are independent of p. Then
if Eq. (47) is assumed,

u]= 1+kz_l fulgs- ,qkuillc—l
_P‘2
Xexp[ ]u(xi)dxl---dxk (49)
2mb
and
= 1
(D[u]=1+ El o felgy,- - - ,q)u(q)- -
Xu(qr)dg:- - -dge. (50)

By functional differentiation of Eqs. (49) and (50) it is
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easy to show that

ML . [ g
ou(xy)- - -du(x,) e El exp[ 2m0]

o(L)
su(gr)- - -ou(gs)
(51

and
3 &L pe 8L
apl"' ou (xl) ou (xz)

With the aid of Eq. (52), Eq. (46) becomes

3 d oL
Lh {aql“éu(xl) 0f [u(x2)+ ]

(la—gs)  #L }
X dxz =(.
Iq:® S (x1)u(w2)

(52)

m0 50 (x)0u(xs)

(53)

If we restrict Eq. (53) to functions #=wu(g) and use Eq.
(51) we obtain

et K a &L)
of-E]i
2mB ) a=1 8q:1* 6u(gy)

1]8¢(lq1 g2|)
+= [ (e
f [u(q 0q1* du(g1)du(gs)

(L)

b7
X[ f ¢l eXp[——*]dh]d%}:O, (54)
2mb
and since , is arbitrary,
a &L) 9 )
+- [t ]——('q’ d
g dulq,) 6 v 9q:1”
(L)
X———dg,=0; a=1,23. (55)
su(g1)du(gz)

Equation (55) is the well-known!®? equation of
equilibrium theory, where 6=£%T, % is the Boltzmann
constant, and T is the absolute temperature. This
equation is usually derived from an assumption about
the explicit form of D,. This form is given by

1 n
Dnzzn—_l exp[_"éHn]; Hn=ZT(pJ)+Un; (56)
=1
where

) :
Zy= exp[——Hn]dxl- s dxn=Qnc™;
Qv 0

1
Qn=f exp[-—-Un]dqy . 'dqn.
v 0

The purpose of this section has been to show that
the equilibrium equation (55) can be derived from the
general equation (20) by using the assumption pre-
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sented in Eq. (47). It is not surprising that this can be
done, in view of the fact that Eq. (47) is a consequence
of Eq. (56). To see this, we use Egs. (19) and (9) to
obtain

Fo(t,21, - - %s)

= lim F, =

n—wo
Voo

lim V‘f Z,1
B [v1%

Vow

1
Xexp[——H ,.]dx,+1- < edxn

=
Voo

= lim Ve exp[—Z—(P12+ +P32)]

1
Xf 0.1 exp[—-BU,.]qur --dga. (58)
14

From Eq. (58) we see at once that Eq. (47) follows with

1
f:(Q1,' AL ,l,linw Vaf 0. eXp[_EU"]dqa+l' < dgn.
vee TV (59)

Before proceeding to the solution of Eq. (55) we
point out that that equation is also equivalent to an
infinite system of equations, given by'®

8fc 19U, 1 r0¢(|gitgenl)
- — | — "

I 09q” 6v 9¢,1*
a=123;

fk+1d(1k+1= 0,

k=1,2,---. (60)

5. SOLUTION OF THE EQUILIBRIUM EQUATION

In this section we shall solve the equilibrium equation
(S5) by a slight simplification of a method by Zumino.?
As in Sec. 3 we begin by examining the case of zero
density, 1/9=0. We again use superscripts “0” to denote
this case. Thus

o 1
(L)[w]= 1+:4=:1 = fi(qy,-* - ,qk)

Xw(qr)- - -w(ge)dqs- - -dgr, (61)
o &L 1 0¢(|q1—¢:)
+ f (‘12/
dq,* dw(q:) 0 Aq:”
X LY
—dg;=0; a=1,2,3, (62)
dw(g1)dw(gs)
19gn - gy =) (©3)
A ql’. . .,qs = ,
w(g1) -+ -61(gs) lw=o
and Eq. (60) reduces to
af0 1aU,
- f0=0; a=1,2,3; k=12 ---. (64)
6q1“ 0 6q1"‘
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In order to solve Eq. (64) ,set

1
Fe=Ci(qy,* -+ ,qx) EXP[—;Uk]; k=1,2,---. (65)
From Eq. (64),
Ck/3q:1*=0; a=1,2,3; k=12 ---. (66)

Since Ci(gy,- - *,qx) is symmetric in its arguments, it
follows that Cy is a constant. In order to determine the
constant, we observe that by letting #—w, V—w in
Eq. (10) we obtain

1

lim———f Fydxy: - -dx, 1.
V=0 Vc av

(67)

Now from Eq. (47)

1
lim —f fdgqi- - -dg,=1,
v

V-0 Ve (68)

and from Eq. (65)

1

1
exp[——U,]dqr crdgy=—.
v 0 Cs

(69)

It is clear from Eq. (69) that C,=1 for potentials
¢(r) which vanish sufficiently rapidly as » — «. We
shall therefore impose as a condition on ¢ that the left-
band side of Eq. (69) be equal to 1 for s=1, 2, 3, - --.
It follows now from Eq. (65) that

' 1
fk°(91,' * ‘,qk)=eXP[_5Uk]3 k= 1; 27 U (70)

. The solution of Eq. (55) for nonzero density can be
obtained from the zero density solution in a manner
very similar to the procedure used in the nonequi-
librium case. We begin with a trial form of the solution
slightly more general than the one used in Sec. 3:

(L)[u]=()[w]; w=a(u+1/v); a=const. (71)
By functional differentiation we have
8Ly 8°(L%
( (72)

ou(q1)- - -du(gs) - sw(qy)- - -dw(g,)

and substituting in Eq. (55) we see that the latter
equation is satisfied because (L) satisfies Eq. (62).

In order to determine the constant, ¢, we observe
first that since U, is a function only of the coordinate
differences (g;—g;), Eq. (59) implies that fi(g1) is a
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constant, and Eq. (68) implies that the constant is
unity. Thus

filg)=1. (73)
Now from Eqgs. (73) and (50) it follows that
oL
o =1; (O0]=1. (79)
514(Q1) Prs]
This in turn implies that
o(L° a
a il =1; (L°)[—]=1. (75)
8w (q1) | wmaso v

We shall see that Eq. (75) suffices to determine the
constant a.
Now from Egs. (50) and (72),

L)

35(L0)
¢f—
dw(q)- - -dw(qs)

(76)

w=alv

It would appear that we need only differentiate Eq. (61)
s times and set w=a/v to obtain an explicit formula for
fe(qu," - -,gs)- However, this is incorrect because fi~1
for large |g:i—g;| and the integrals in Eq. (61) converge
only for testing functions w(g) which vanish sufficiently
rapidly at infinity. For w=a/v, the integrals diverge.
The difficulty is that Eq. (61) does not represent the
functional (L°)[w] in a sufficiently large domain of
functions w(g). What is needed is an “analytical con-

‘tinuation” of the representation of the functional.

Such an analytic continuation can be obtained by the
following transformation which was suggested by
Zumino.?

(L) [w]=exp[{MO)[w]], (MO)[w]=log(L)w], (77)

where
o 1

<M0>[w3=2 - gko(qu‘ N ;qk)
k=1 k!

Xw(gy): - -wlgr)dgs-- -dgr.  (78)

Now
sy =2 —[ex [<Mo>[w33ﬁ@]
@) o LT 50(q0) Joms
5(M)
= = 10( 1)-
0@ ems o

Proceeding in this manner, we may obtain the following
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relations between the £,° and g;°:

f(g)=2g"(q1),
12(g1,92) = £:°(g1)8:°(g2) + 8:°(q1,92),

S(41,g2,95) = g1°(g1)8:°(g2)8:"(g3) (79)
+£2°(91,92)81°(g3)+82°(92,95)8:"(g1)
+82°(91,)81°(92)+85"(91,42:25),
g:°(q1)=f(q),
82"(g1,92) = f(q1,q2) — f*(g0) /" (g2),
£°(91,92:93) = £ (q1,92,98) — f*(q1) 1 (g2,92) (80)

— [(g2) £(q1,95) — f(g5) 2" (q1,92)
+2£1°(g1) /1°(g2) 1 (gs),
etc. Functions g related to the f;® in this manner are

known in statistical mechanics as Ursell functions. We
observe that except for g% they vanish for large values

of |gi—g;l.
Let
z=a/v. (81)
From Eqgs. (77) and (75),
a1 Iy 1 )
50(q1) lome (L)[E] 00(g) l0me @
and from Egs. (76), (77), and (75)
(L%
felgungs) =@ ————
. aéw(ql)ﬁw(qz) wes
(M) §(M°) 8 MP)
= g I +
HE m‘aw(qo bulgs) o (g)bulas) }
1 (M)
- {E dw(q1)dw(gs) w=z}. (8)

Thus from Eq. (78)

1
folgugs)=1+a* 2 ;Zk

k=0
X f Qer(quy -+ *,ger2)dqs - - dgres, (84)
and from Eq. (82)

) w 1 1
1+ ;‘lzk ger1’(Q,q1, -+ qi)dgr - - -dgr=—. (85)
a

k=1

By virtue of the remark made at the end of the last
paragraph, we see that the integrals appearing in Egs.
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(84) and (85) are convergent. If we set

1
bF; f 8°(g:91,* * *,qx~1)dq1" + - dgi—1;
' E=2,3,--+; bi=1; (86)

then Eq. (85) takes the form

2 Y Ehuzt=1.

k=1

(87)

The b are called “cluster integrals” and are inde-
pendent of ¢ because the fi?, and hence the g, are
functions only of the coordinate differences. The
quantity z is called the “activity.” Equation (84)
expresses f; as a power series in the activity, and the
latter is related to the density 1/v by Eq. (87). In
order to obtain an expression for f, as a power series in
the density, we assume that

-] dj
=1 97
and insert in Eq. (87). One obtains easily
1 2b,
=———2+O(1/v3), (89)

v v

and inserting in Eq. (84) we obtain

1
f2(g1,02) =1+8:"(q1,42) +—[ f 85°(q1,9:4s)dqs
2

—2g:°(q1,92) g2°(41143)dqu+0(1/712)- (90)

It can easily be shown that this result agrees with
previously given expressions for f,, and can be used to
obtain the virial expansion of the equation of state to
order 1/v. Formulas for f, for s$>2 can be obtained by
an obvious generalization of the method used for f,.
However, the solution of the functional differential
equation, Eq. (53), is in principle already given by Eq.
(71), where (L°) is given by Egs. (61) and (70), and a
is determined by Eq. (87).

6. BOLTZMANN EQUATION

The purpose of this section is to present a simple
derivation of the Boltzmann equation based on the
results of Sec. 3.

In recent years, several authors have given derivations
of the Boltzmann equation based on the hierarchy equa-
tions (22). Kirkwood”# has used the hierarchy equation

71. Prigogine, Proceedings of the International Symposium on
Transport Processes in Statistical Mechanics Held in Brussels,
August 27-31, 1956 (Interscience Publishers, Inc., New York,
1958).
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for F1, and by means of “phase space transformation
functions” has shown that the Boltzmann equation is
satisfied by a function obtained from F; by time-
averaging. Bogoliubov!* has obtained the Boltzmann
equation for F; by assuming that for s>1, F, depends
on the time only through a functional dependence on F1.
Green® has obtained the Boltzmann equation for the
spatially uniform case by means of “Ursell function”
expansions of solutions of the hierarchy equations.

For the present derivation we are indebted to all of
these, but our task is greatly simplified by the fact that
we have at our disposal the explicit solution of the
initial value problem for the hierarchy equations
obtained in Sec. 3. The leading term of the expansion
of that solution consists of an integral which already
closely resembles the Boltzmann collision integral.
Following the method of Green, we simplify this
integral by making use of the fact that in all but a small
portion of the initial configuration space of two par-
ticles, two-body interactions can be described in terms
of complete collisions. Under the assumptions usually
made in deriving the Boltzmann equation we find, in
agreement with Kirkwood, that that equation is satis-
fied by a time-averaged density function. It appears
likely that by using further terms of our expansion,
which involve interactions of more than two particles,
the method used here can be extended to obtain
generalizations of the Boltzmann equation to higher
densities.

We begin by writing Eq. (41) for the case s=1:

1
Fl(t,x1) = T—g(l)Fl (O,xl) +- f[T_g(z)Fg (O,xl,xz)
v

— T WF,(0,%1,20) Jdxe+0(1/2%). (91)

Since initial data may be specified at an arbitrary time,
Eq. (91) may be rewritten as

1
F1(l+ T, xl) = T_,-(I)Fl (t,xl) +" f[T_,(Z)Fg(t,xl,xz)
?

-T, “)Fz(t,xl,xg)]dx2+0(1/v2). (92)
Since Eq. (92) is an identity in x,, we may replace % by
S:Wx;. If we then introduce the transformation of the
integration variable x.=S,%x,’, we obtain

1
~[F1(t+7, 8, 0n)— F1(t,01)]
,

1
=— | [S—+@Fy(1,S, V21,5, Vy)
T
— F2(4,21,%2) Jdqadpa+0(1/17).

8 M. S. Green, J. Chem. Phys. 25, 836 (1956).
7. G. Klrkwood J. Chem. Phys. 15, 72 (1947).

(93)

ROBERT M.

LEWIS

We now introduce a time average! of 7, defined by

1 T
(Fh(tn)=- f Fi(t+s, SeWxy)ds. (94)
T Yo

We shall show that (F;) satisfies the Boltzmann
equation under the following assumptions:

@) ¢(r)=0 forr>r.

(I1)  Fa(t,x1,22) =~ F1(b21)F1(t,%2) for lg2—aq1 | =72
for some 72>0.
(III) »>1.
(IV) Fl(‘a 111+ Aqu Pl) zFl (t’qupl)

where |Agi|>>ry,re.

Expression (II) is a generalized form of the molecular
chaos assumption. This form of the assumption and the
general technique which will be used to obtain the
collision integral were suggested by a paper of Green.?
A detailed discussion of the assumption, which is part
of Green’s “product condition” is contained in his
article.® In (IV) we assume that F; does not change
appreciably under translations Ag; where |Agy| is large
compared to both 7, (the range of intermolecular forces)
and r, (the correlation distance). F; may, however,
change considerably over distances of the order of a
mean free path. Conditions (I) and (III) are self-
explanatory. Expressions (I)-(IV) are the assumptions
usually made in deriving the Boltzmann equation. The
earlier derivations required that (II) hold for all values
of |ga—gi].

Let

0( 3, pr* a(F)x

a=1l M aQ1

Then, since S,Vx:=S5,"(q1,p1)="[q:1+ (z/m)p1,p1]
we have

d
DyF)(t,%1) =;1‘(F>1(t+2, S:01) | =0
2

D(F)i(tx1) =

(95)

1 p7d
=— f —F1(t45+2, Ss12V%1)dS | 2=0
Ty ds

1 p7d
=- f —Fl(t-l—s, S,(”xl)ds
T Y9 ds

1
=—[F1(l+7', Sf(l)xl) —"Fl (t,xl)]. (96)

We recognize Eq. (96) as the left-hand side of Eq. (93).
In order to evaluate the right-hand side of Eq. (93)
we choose fixed values of g1, p1, and p, and examine the
integration with respect to ¢,. The region of integration
may be conveniently analyzed as in Fig. 1.
1 The operation that leads from F; to (F) is sometimes called

“coarse-graining”’ or ‘“‘smoothing.” The latter term would appear
to be preferable. See footnote 7.
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In Fig. 1, A, B, and C together form a cylindrical
region with spherical end surfaces. Outside of this region
S @S, V2,,5,Vx,} = {x1,%.} and the integrand in Eq.
(93) vanishes. For points in C, the operator S,® maps
gz into ¢;”" (the position of S,V¢, relative to fixed ¢y)
and $_.® maps ¢,” into ¢.’. For all points in C having
the same orthogonal projection (given by the vector b)
onto the plane P, the momenta p;’ and #.’ are the same,
ie., 1" and p.’ are functions of p;, p. and the “impact
vector” b. From Egs. (9) and (12) we have

Dt<F>1(i)q1’Pl)

1
— [an.[ aatrianpOP i)
b3 P

- Fl (t,QI,?l)Fl(tsql)?ﬂ)J
po—h

W

1 1
X +-I+O(—). 97)
TV 22

The integral in Eq. (97) represents the contribution
to the integral in Eq. (93) from the region C except for
an error due to the fact that the ends of the cylinder C
are not planes but spherical segments. This error, plus
the contributions from the regions A and B, determine
the term (1/7v)1. In Eq. (97) we have clearly made use
of assumptions (IT) and (IV). The volume element dg,
has been replaced by (r/m)| pa—p1|dA4 where d4 is an
element of area on the plane P. Now from Eq. (93)

Fr(t+s, S:Wxy)=F1(tw)+0(1/v). (98)
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Fie. 1. Configuration space for a binary collision.

By inserting Eq. (98) in Eq. (94) we obtain
Fu(tx1) = (Fh1{t,x1)+0(1/v). 99

This result enables us to replace F by (F); in Eq. (97),
the only change being in the term of order 1/+

Let u, be the average relative velocity of two par-
ticles. If we now choose 7 such that rug >>r;(j=1, 2), the
region C will be much larger than the regions A and B
and the term (1/7v)] may be neglected. By (III) we
may omit the term of order 1/¢®> and the resulting
equation is

(Fa(t,gi,p1)

D, 1
—~ [ [ dATERGapKENGa,0)
P

v
(Fatan ) Fnanp ]| LY.

(100)

This equation is the Boltzmann equation.



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 2, NUMBER 2

MARCH-APRIL, 1961

Determination of Thermodynamic Green’s Functions
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In the study of thermodynamic correlation functions or Green’s functions, one is naturally led to a
calculation of values of the Fourier transform of the Green’s function on a discrete set of points in the
complex energy plane. It is shown that even though these points do not in general possess a limit point
within the region of analyticity, one may still uniquely determine the Fourier transform of the Green’s

function directly from its values at these points.

ECENTLY, several authors' have approached the
quantum-mechanical many-body problem with
the aid of thermodynamic time-dependent correlation
functions, or Green’s functions. These are determined in
actual calculation by integro-differential equations, de-
rived from the field equations, together with a particular
boundary condition in time. One of the features of
this approach is that by a suitable extension of these
functions to complex times and temperatures, the
boundary condition becomes a condition of periodicity
along a particular line in the complex time plane. This
is taken into account by expressing the Green’s function
along this line in a Fourier series, and determining the
Fourier coefficients. These turn out to be evaluations
at a particular set of points of the extension of the
Fourier transform of the Green’s function to the
complex energy plane. At this stage one would like to
obtain the Fourier transform from a knowledge of the
Fourier coefficients. If the Green’s function is analytic
at infinity in the complex energy plane, one is assured of
a unique analytic continuation of the Fourier coeffi-
cients, because of the theorem that an analytic function
is determined by its values on a set of points possessing
a limit point within the region of analyticity. In general,
however, the Green’s function is not analytic at
infinity. It is our purpose to provide the criteria by
means of which this continuation may be uniquely
inferred, in spite of the possibility of nonanalytic
behavior at infinity.

We shall discuss only the density autocorrelation
function, since this case illustrates all the essential
features of our argument. First we extend this function
to complex temperature and time, in order to state the
usual boundary condition. We next review the argument
relating the Fourier transform to the Fourier coeffi-
cients. Then we are in a position to show how the
transform may be inferred from the coefficients. Our
results are applicable to other Green’s functions with
only minor modifications in the discussion.

* National Science Foundation Predoctoral Fellow.

T Present address: Institute for Theoretical Physics, Copen-
hagen, Denmark.

TP, C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959);
A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, j.
Exptl. Theoret. Phys. (U.S.S.R.) 36, 900 (1959) [English transla-
tion: Soviet Phys. JETP 36, 636 (1959)1; E. S. IFradkin, Nuclear
Phys. 12, 465 (1959).

The thermodynamic density autocorrelation function
is given by )
Tre=H=#M (p(1141)p(rat2) )+

F (f1t1,r2t2) = Tre—ir(H#—sN) ’ (1)

where p(rt) is the density operator, i (rt)y(xt), u is
the chemical potential, and ( ), denotes the time
ordered product. When 47 is real and positive and
equals 8=1/KT, the trace in Eq. (1) is just the grand
canonical average, which we assume converges ab-
solutely. As a result of this absolute convergence, F is
analytic in the lower-half 7 plane, so that if we know
F in a suitable region of the lower-half 7 plane, we can
infer the grand canonical average for real 8 by analytic
continuation. For convenience we restrict 7 to the
fourth quadrant, i.e., Rer>0, Imr<0.

For an isolated system F is a function only of the
time difference f;—¢,. We shall denote this difference
by ¢, and shall also suppress explicit reference to
the space variables. F is conveniently analyzed by
separately considering the functions

Tre~i7#E-1Mp(1)p(0)
Tre—ir(H—uN)

3 Tre—ir(H—uN)eith (O)e—itilp (O)

b

Fyi(t)=

Tre—ir(H—yN )

) (2)
Tre~irH-#Mp(0)p(t)

Tre—if(H—nN )

For(t)=

3 Tre—i‘r(H-uN)e—ith (0) eith (O)

)

Tre—ir(H—yN)

so that
>0

£<0.

(3)

Under the assumption of absolute convergence of the
trace, F () converges absolutely in the closed region
ITI+1IV (see Fig. 1) of the complex ¢ plane, and is,
therefore, analytic and bounded in the open region
ITI4-1IV. Similarly, F<7(¢) converges absolutely in the
closed region I41I1I, and is analytic in the open region
I4-II. We make the natural complex extension of ¥

232
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to the region II41IV defined by
t pl
(B, tinfIV -T pane
Fe(=] @ - < ;
For(8), tinII,
_ o m AN puod
i.e., we take the time ordering in Eq. (1) to be governed
by the real part of ¢. T
From the cyclic property of the trace [Tr(4BC)
=Tr(BCA), etc., we then obtain the boundary ¥ic. 1. The complex  plane.
condition,
()= T (e : Since
Fsw(f)=F "(l—7), t¢inIII+IV. (5) 1/ (wekie) = P(1/w) Frid (),
The corresponding condition on the extended F is Eq. (12) is equivalent to
Fir(t)=Fo(t— tin IV, Ret<Rer. 6
O=F0=m), ’ RO ©do [Pl Bir(w—ie)
Since F>(¢) is bounded in III41V, its Fourier F¥ ()= —e"“"‘l —- . ]
transform (in the generalized sense) exists? along every —o 2m 1—gmior 1—eter
line in this region parallel to the real axis, and along treal, (14)

the boundaries. Similarly, F<*(¢) has a Fourier trans-
form along every line in I4-II parallel to the real
axis, and along the boundaries. We then have

® dw
Fyir()= f e“"'f>"(w)?, ¢ in IIT+1V,
—00 m
(M
* dw
For(t)= f e-iw'f<"(w)2—, {in I+II.
—c0 T

The boundary condition of Eq. (5) implies that the
Fourier transforms satisfy

5> (w)=e% < (w). (®)
It is useful to introduce
A (w)=i(1—e*) f5(w), ©)
in terms of which
® dw Ai(w)
Fsir(l)= f —giat . {in III+IV, (10)
o0 210 1—gier
* dw  A7(w) .
For()=— [ —eiot tin I+IT,  (11)
0 271 1—egtor
and
*dw 2 dw’ A (w') 1
Frr(t)=f _e—wt{f N -
—w 27 o 2r wtie—w 1—ew'r
© dw’ A7 (w') 1 1
— . J, ireal. (12)
o 2 w—te—w’ 1—e¢'r
From Egs. (8) and (9) we note that
©  Trer@=#Mp(1),0(0)]
Air(w)=i f i i (13)
Tre—z'r(H—uN)

—n

2 M. J. Lighthill, Tntroduction to Fourier Analysis and Generalised
Functions (Cambridge University Press, New York, 1958),
Sec. 2.3.

where the function ® of the complex variable z is
defined by

® dw AV (w)

®ir(z)= — .

—0 2T Z—w

(15)

By virtue of the absolute convergence of the grand
canonical averages, the integral of the absolute value
of A (w) exists, so that from Eq. (15) we have

(A) @ is analytic off the real axis;

(B) @ goes to zero as z approaches infinity along any
straight line in the upper or lower half-plane.

The boundary condition of Eq. (6) is most simply
taken into account by determining F along the line
from —7 to 7 (the dotted line in Fig. 1) in the form
of a Fourier series with period 7:

1
Fe()=- ¥

T v =integer

e—ant/rfy:r’

t/rreal, —1<¢/r<1. (16)

The Fourier coefficient £, is given by

r

=
v

[

e‘hrivll‘rFi"(t)dt:f 621rivt/‘rF>if(t)dt. (17)
0

From Eq. (10) we then have

“dw 47 (w)
f,= —————=®"(21p/7).

— (18
o 27 Cav/T)—w )

It should be noted that the Fourier coefficients
{/,"} determine F everywhere, for they determine it on
the line from — 7 to 7, and hence on lines contained in
its regions of analyticity. Therefore, F is determined in
II4+1IV and, in particular, its boundary value on the
real line is determined. In principle then, one can
determine /# from {f,} by summing the Fourier series
and performing the necessary analytic continuations.
However, it is also possible to take advantage of the
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fact that f, is simply ®(2) evaluated at z=2xv/7, and
infer ®(z) directly from its values at these points. Since
® is analytic off the real axis, the problem is that of
finding the correct analytic continuation from these
values. Finding analytic continuations is not a problem
in practice, since the result of a calculation is to give
{f,} not as a sequence of numbers, but in a functional
form &(z) evaluated at 3=2mv/7, v a positive or negative
integer. But the function ®(z) is clearly not unique
since, for example, ®(z) and $(¢»*"z) take on the same
values at z=2mv/7.

We do know, however, that the desired continuation,
$(z), satisfies A and B. We shall show that these two
requirements are sufficient to single out the correct
continuation; i.e., if a ®$(z) satisfies A and B, it is
indeed the desired ®(z).2

Suppose then that there were two functions, ®(2)
and &®,(z), both satisfying A and B and such that
&1 (2wv/7)=®2(2wv/ 1), for all integral ». The function
¢(z)=31(2) —P2(z) therefore satisfies A and B and in
addition ¢(27y/7)=0 for all integral ». We know,
however, from Carleman’s theorem* that if a function
g(z) is analytic and bounded in the upper half-plane
including the real axis, and has zeros in the upper
half plane at r.e®» with multiplicity a., but is not
identically zero, then the series

S= i (sinf,)an/rn

n==1

is convergent. From A and B it follows that ¢(2) is
bounded in any region bounded away from the real
axis. Therefore, the function g(z)=¢(z4+2n/7) is
analytic and bounded in the upper half-plane and on
the real axis, and has zeros at 7,e%*=2zv/7,v=1,2, - - -.
We note that (sind)/r is positive for r¢? in the upper
half-plane. Thus, if g is not to be identically zero, the

3 Tf the weight function A4 (w) is known to be zero outside of a
bounded region on the real axis, then the function ®(3) is analytic
at infinity, and 4 and B clearly determine a unique continuation.
In general, however, A (w) will not be identically zero in a neigh-
borhood of infinity, and ® need not be analytic at infinity.

4E. C. Titchmarsh, Tke Theory of Functions (Oxford Univer-
sity Press, New York, 1939), 2nd ed., p. 131.

G. BAYM AND N. D. MERMIN

sum S must also converge, if we sum over any subset
of the zeros of g, and ignore multiplicities. But summing
over the set of zeros at

7,60 = (2mv/| 1| )eilaren)
we have

» sin(argr) |7| |7] © 1
, ————— —=—sinfargr) 3 -

=1 v 2r 27 =1 p
But the sum on the right is divergent. Therefore g(z)
and, consequently, ¢(z) must be identically zero in the
upper half plane. By a similar argument, we may show

.that ¢ is identically zero in the lower half plane.

Therefore, the criteria A and B are necessary and
sufficient conditions for the continuation of the Fourier
coefficients to be the correct one.

It should be added that if one calculates only

Iliin—»o [®"Q2nv/7)],

in some open set of the real r axis, then one may still
infer the desired continuation, ®7(3), for 7 in the lower
half plane. This is because ®¥(2xy/7) is analytic in the
lower-half 7 plane for each fixed », so that a knowledge
of its boundary value on an open set of the real r axis
determines it in the lower half-plane.’ Since we know

"that A and B suffice to characterize the correct continua-

tion ¥ (z) when 7 is in the lower half plane,® ®(z) is
inferred by first continuing the boundary value
Fourier coefficients to the lower-half 7 plane, and then
continuing in 2, under the requirement that A and B
be satisfied.

5 This follows from the Schwarz reflection principle. See, €.g.,
footnote 4.

¢ Note that A and B do not suffice to characterize the correct
z continuation of the boundary value function

lim ®v(2xv/7),
Imr—0

since, for example, we may add to any continuation the function
(1—e¥*7)/(z+4),

(1—e#7)/(z—4), =z in lower half-plane,

2z in upper half-plane
Ag)=

which for real positive 7 satisfies A and B, and is zero when
2=2mv/7.
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Itis proved that the H theorem for an ensemble of isolated quantal systems with a discrete energy spectrum
is false provided the systems satisfy certain broad conditions: the theorem is false for bounded many-particle
systems with potential interaction, provided that interaction contains no repulsive singularities stronger
than -2 and no attractive singularities stronger than r~1, Ensembles of such systems behave almost per-
iodically, in the sense of H. Bohr. The entropy and the probability of finding an observable in a given

range are both almost periodic functions of time,

I. INTRODUCTION

HE H theorem for an ensemble of isolated quantal

systems states that the coarse-grained entropy of

the ensemble increases to its equilibrium value and
stays there.

The H theorem was originally proposed by Boltzmann
to provide a theoretical basis for the irreversibility of
thermodynamic systems and in particular for the
increase of entropy with time. Boltzmann’s original
statement of the theorem, by which the entropy was
defined as a function of the state of an individual
system, was contraverted by the well-known! objections
of Loschmidt and Zermelo. The recurrence objection of
Zermelo uses a theorem of Poincaré by which the state
of a finite bounded system of particles recurs over and
over again—if not exactly, at least to within any arbi-
trary positive error.

The H theorem was therefore restated by Gibbs in
terms of ensembles of systems, the entropy being defined
as a property of the ensemble. This form of the theorem
was generalized to quantum mechanics by Pauli? and
by others. We shall be concerned with Pauli’s form of
the H theorem, which is also that of Tolman.?
 Pauli worked through a master equation whose
derivation was based on the assumption of random
phases at all times after some initial instant £, but this
is untenable except for equilibrium systems. The
assumption was removed by van Hove,* who required
initial random phases only. However, van Hove’s
derivation depends on an approximation which may be
removed only by passing to the limit in which the
number of particles becomes infinite, whereas Gibbs’
form of the H theorem was supposed to apply to en-
sembles of systems which contain a finite though large
number of particles.

* This work was largely performed while the author was at
Stanford Research Institute, Menlo Park, California, with the
support of the National Aeronautics and Space Administration,
and partly while at the International Summer School of the Uni-
versity of Grenoble at Les Houches.

1D. ter Haar, Revs. Modern Phys. 27, 289 (1955), gives a
general review of the history and foundations of the H theorem.

*W., Pauli in Probleme der Modernen Physik, Sommerfeld Fest-
schrift, edited by P. Debye (Hirzel, Leipzig, 1928), p. 30.

3R. C. Tolman, The Principles of Statistical Mechanics (Oxford
University Press, New York, 1938).

* L. van Hove, Physica 21, 517 (1955); 23, 441 (1957).

Experimentally we are not able to distinguish each
individual quantum state of a macroscopic system, only
a large though finite set of states. Gibbs and Pauli
define the entropy in terms of the coarse-grained prob-
abilities of finding a system of the ensemble in one of
these sets.

It might be supposed that coarse-graining would be
sufficient to ensure the irreversibility of ensembles of
isolated finite many-particle quantal systems, and that
there would be no need to allow the systems to become
infinite. We shall show that this supposition is incorrect,
and that for reasonable interaction potentials Pauli’s
form of the quantal H theorem is false when the systems
are finite.

A set of conditions for the falsity of the theoremisgiven
at the end of Sec. V. The disproof depends on the theory
of almost periodic functions, due largely to H. Bohr.®
The entropy is shown to be an almost periodic function
of time. Except for the trivial case of equilibrium en-
sembles, it cannot also be nondecreasing, as will be
seen from the definition of almost periodicity which
follows.

II. ALMOST PERIODICITY

In Schrédinger representation, the state vector of a
quantal system in a pure stationary state is a periodic
function of time. If the system has a discrete spectrum,
then some of the features of periodicity remain, even
though the system may be in a nonstationary state or
in a mixed state. The features which remain are those
of almost periodicity, which is a generalization of pure
periodicity.

The amplitude of a single classical harmonic oscillator
of unit angular frequency has the form

A(f)=Ao sin(t+8). (1)

Now consider a pair of coupled oscillators, in which
the proper vibrations of the pair have angular fre-
quencies 1 and V2. Then the amplitude of one of the
oscillators has the form

A () =Aosin(t+3)+ A1 sin(V2i+81).

5 H. Bohr, Collected Mathematical Works, edited by E. Fglner
and B. Jessen (Danish Mathematical Society, Copenhagen, 1952),
Vols. 2 and 3; see also A. S. Besicovitch, Almost Periodic Functions
(Dover Publications, New York, 1954), reissue.
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Generally this amplitude is not periodic: There is no
nonzero value of r which satisfies the equation

AN)=A@+7) (all2). )

But we can establish the existence of values of = for
which this equation is approximately satisfied, and the
approximation can be made arbitrarily close by appro-
priate choice of the values of 7.

Almost periodicity of a function f(¢) is defined by the
following property: For an arbitrarily small positive
error ¢, the inequality

[+ —f@)] <e (all 1), (3)

is satisfied by infinitely many values of 7, these values
being spread over the whole range —«© to 4+ so as
not to leave arbitrarily long empty intervals. This
defines what Besicovitch terms a “uniformly almost
periodic function (uap),” but since we shall not need
to consider any other types of almost periodicity we
allow the preceding definition.

Every almost periodic function f(f) has a Fourier
series which converges uniformly to the function

fO=5 dogiont, (—w<t<+w), (4

where the w, are real. Conversely, every uniformly con-
vergent Fourier series converges to an almost periodic
function. The Fourier transform of such a function is a
sequence of delta functions.

III. DENSITY MATRICES

The density matrices which represent mixed states or
ensembles of quantal systems span a Hilbert space,®
which we shall term ‘“density space.” In a discrete
representation the scalar product of two elements A and
B of this space is defined as follows:

(AaB) = Z A mm’*Bmm' = TI' (ATB). (5)

This quantity is unchanged under unitary transforma-
tions in state vector space. The length | o[l = (o,0)? of a
density matrix is never greater than 1, and if the system
is isolated it remains constant in time.

Almost periodicity was generalized by Bochner” to
include functions whose values are elements of a metric
space, such as Hilbert space. This definition depends
on the length used to specify the “error’’ which appears
in the definition of almost periodicity. All the usual
properties of almost periodicity carry over to this
generalization. In particular, finite sums and uniformly
convergent series of almost periodic functions are them-
selves almost periodic, and uniformly continuous func-

¢ U. Fano, Revs. Modern Phys. 29, 74 (1957).
7 S. Bochner, Acta. Math. 61, 149 (1933).
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tions of almost periodic functions of time are themselves
almost periodic in time.

Almost periodicity of solutions of the classical wave
equation has been treated by Muckenhoupt? and
Bochner.! We have considered almost periodicity of
density matrices, using length in density space to define
the error.

A density matrix is an almost periodic function of
time if for an arbitrarily small positive error e the
inequality

lo(t+r)—e®] <e (all®) (6)

is satisfied by infinitely many values of 7, these values
being spread over the whole range —« to -+ so as
not to leave arbitrarily long empty intervals. Almost
periodicity of the elements of a density matrix is not
alone sufficient to ensure almost periodicity of the
matrix, although the converse is true.

Let o(¢) be the density matrix of a system with a
discrete set of stationary states, labeled =0, 1, 2, -- -,
with energies E,, some of which may be equal if there
are degeneracies. In energy representation the matrix
elements are

pan () =(n|o(t)|#")
=Pan’ (0) exp[iﬁ—l (En’ —-E,.)l], (7)

and each is a periodic function of time. Let Tp,=n)(n
be the projection operator onto the nth stationary
state: then

an’(t)=Tn9(t)Tn’; 8

is the matrix which in energy representation has only
one nonzero element, equal to p,. (£} and in the location
(n,n’). These matrices are orthogonal in density space:

(@™ (1),0"" ™" (£)) =8nnrBuwwrr | puw () |3, )
and

e)=5 ¥ ()

n=0 n’=0

=5 5 0" (0) expliwnn),

n=) 7/ =0

(10)

where wpn = (Ep—E,)/#%---9(f) is almost periodic if
this Fourier series, with coefficients in density space,
converges uniformly. At this stage the discreteness of
the energy spectrum is essential, for if the spectrum
were continuous we should in general have a Fourier
integral, and no almost periodicity.

Consider the finite sum

N N’

oV (O)=2 2 ()

n=0 n’=0

(11

8 C. F. Muckenhoupt, J. Math. and Phys. 8, 163 (1929).
9 S. Bochner, Acta Math. 62, 227 (1934).
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as an approximation to p(#). The square of the error is

o= @)= = ¥ @

n=N+1 n/=N'41

-3 % el
n=N+1 n'=N"41
- ¥

n=N-+1 n’=N’+1

loan (0)[2. (12)

The second equality follows from the orthogonality of
the g™ (1). Since the error isindependent of time, e¥*’ ()
converges uniformly to g(#), and g(#) is almost periodic.

IV. PROBABILITY AND ENTROPY

The probability of finding a system of the ensemble
in a typical state m of a complete discrete set of states is

tn()=Tr [e()Tn], (13)

where T,,=m){m projects onto the state m. Tr [¢Tm]
is a uniformly continuous function of ¢, so p.(¢) is an
almost periodic function of 7.

For systems of many particles it is not possible to
distinguish the individual states m, but only to deter-
mine whether the state of the system lies in some range
Ry containing a finite number vy of states. We shall
suppose that the ranges R do not overlap and together
include all states m. This simplified representation of
experimental error is analogous to coarse-graining in
classical mechanics. The probability of finding the
system in the range Ry is

Puld)= ¥ pal), (19)
mEC Ry
and
> Pu()=1. (15)

The entropy S(¢) is defined in terms of these sets of
states by the equation

SO)=—k Xy Pu(t) In[va'Pu(1)],

where £ is Boltzmann’s constant.

f(x)=xInx is a uniformly continuous function of x
when 0K x< 1; consequently each of the terms in (16)
is almost periodic in time, and if the sum were finite,
then S(¢) would also be almost periodic.

If it is assumed that the same finite region of phase
space makes a dominant contribution to the entropy
at all times, and that this implies that the sum in (16)
is effectively finite, the proof of the almost periodicity of
the entropy is already complete. The next section pro-
vides a fairly detailed proof, and the conditions neces-
sary to carry it through.

(16)
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V. UNIFORM CONVERGENCE

The mean energy E=(H)=Tr(oH) of the ensemble
is conserved. Suppose for the present that we could
measure 7 sufficiently accurately to distinguish indi-

vidual pure states. Each state m has mean energy
E my={(m|H|m), (17)

and measurements of the variable m enable us to
measure the mean energy of the ensemble:

Eest:: Zm PmE(m)

=Zm PmmHmm
=(H)-3 é Pt H ot m. (18)

The error in this estimate is frequently assumed to be
negligible. We impose the weaker condition that it

should be bounded:
E—FE' {Ex{E+E. (19)

Now return to the coarse measurements of ranges Rar.
Let

Eon=vi™" 3 Em. (20)
m(CRM
We suppose that the error in
Ege=2u PuEw), (21)

the energy estimated from the coarse measurements, is
bounded ; then

E—E'<Eg:<E+E". (22)
Generally, Egg, ¥ Eest.

Let the ranges M be labeled in order of increasing
energy Eqr), so that Eam < Eary when M1<M, We
seek an upper bound to the contribution

SMy=—k Z Py ln(vM‘"lPM) (23)

M=My

to the entropy from states M 2> M,, where M, is large
and the Py are subject to the energy condition (22).
Such a bound may be obtained by putting all systems
with M <M, in the state m=0 of the lowest energy
E (-0 and allowing Egs to take on its maximum
possible value, so that

o
S PuEuny=E+E". (24)

M=My

The energy scale has been chosen with E,—0y=0. Since
for sufficiently large Mo, Ew>E-E', the equality
(24) ensures that

>, Pu<l.

M=Mg
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Su, may be maximized by Lagrange’s method, where-
by
Pry=vy exp[ — (1+eEan) ],

and a is determined by the equation

(M 2Mo) (25)

MZ vuE ) exp[— (1+aEan)]=E+E".  (26)
=M

[]
Therefore for any ensemble whose mean energy is E,

o0

Sue$ X vu(14+aEan) exp[— (14-aEan) ]

M=M;

3

<X

M=M,

vu(Ey K 1)

+aE ) expl— (1+aEon)]

= (Eaoy o) (E+E"). 27
Assuming there is no finite energy range containing an
infinite number of E ),

lim Ea@ryt=0.
Mo—»0

Also if

a0

Z VME(M) exp[—— (1+0£0E(M))]

M=M,

(28)
converges for all fixed ao>0, however small, then

lim 3 wvuEqon exp[—(14+aEon)]=0, (29)

Mo—»o0 M=Mp

and a must be less than ay to satisfy Eq. (26) if M, is
sufficiently large. Therefore

Mp->w

lim a=0 and
Mo—>o

(30)

Therefore, we can approximate as close as we please
to the entropy of all ensembles with fixed mean energy
E by replacing the infinite sum (16) by a finite sum
over the same values of M for every such ensemble. By
the conservation of energy an ensemble has the same
E at all times, so the infinite sum (16) converges uni-
formly to S(¢), and S(¢) is almost periodic.

The assumptions made in the proof were

(A1) Each system of the ensemble is isolated.

(A2) The energy spectrum E, is discrete.

(A3) The energy ‘“‘spectrum” Emy=H,m of the
complete set of states used to define the entropy is
discrete, has a minimum energy level and no limit
points (points of accumulation).

(A4) The density of the “measured energy spectrum”
E a1y associated with ranges Ry each containing a finite
number v of states m does not increase so rapidly with

PERCIVAL

M that

Y. vuE ) exp(—aoEon)
M e=()

diverges for any ao>0.
(AS) The “measured mean energy”’ Egs is never
greater than some maximum value E=E".

VI. SYSTEMS OF INTERACTING PARTICLES

It is conventional to use the momenta of the inter-
acting particles for the measured coordinate m. More
generally m labels the eigenfunctions of a complete set
of commuting operators which themselves commute
with the Hamiltonian H, which the particles would
have in the absence of interaction between them. By
the usual choice of zero of energy, H, is a positive
definite operator. Typically

Ho=%3:p%/us,

where p; is the momentum and u, the mass of particle i.
Suppose the interaction V can be represented by a
potential function V(X), where X represents the coor-
dinates of all the particles. Then the total Hamiltonian
His

(31)

H=H+V. (32)

A system of a finite number of independent particles
contained in a box of finite volume with perfectly
reflecting or periodic boundary conditions has a discrete
energy spectrum. When the particles interact with any
reasonable potential V(X), the discreteness of the
spectrum is retained. A petit ensemble of such systems
then satisfies conditions (A1)-(A3).

Generally the ranges Ry are taken to be small
regions in the space of the momenta of all the particles.
Typically no momentum varies by more than a constant
g within each Ry, so that the energy varies by no more
than

AEay=2: pir Api/ps

<l pilg/ms
For sufficiently large M, AE 4 is negligible in com-
parison with E ) so that for (A4) and (AS), E) may
be replaced by Em), v by 1 and Egst by Eest. Assump-

tion (A4) is then satisfied by the spectrum Em).
For (AS) we require to know

Eest—E= 2 Z Pmm’Hm'm

m m'Fm

=Z Z pmm'Vm’m

m m'Fm

= TI'(QV) -_ Z Pmm me'

(33)

(34

If the interaction has no singularities stronger than 2,
where 7 is an interparticle distance, then V. is bounded
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and the second term in (34) is bounded. We have
assumed that the region which contains the system is
finite in volume.

If the potential energy of interaction is always greater
than some constant V,, then

E2(V)=Tr (eV) 2V, 35)
since the kinetic energy (H,) is positive. Therefore
Tr (V) is bounded.

It remains to be shown that Tr(pV) is bounded in
the presence of attractive Coulomb singularities. We
give a nonrigorous demonstration. Suppose it were
unbounded for the case of the interaction of two op-
positely charged particles. Then for the magnitude of
Tr (¢V) to be very large, part of

P(0) = L (| ) (| 1)

must be concentrated in a very small volume £, say a
sphere of radius R. For approximately uniform dis-
tribution in the sphere

(36)

f b <L; p(DK3/ (4R, (3T)
Q

If the charges are eZ, and —eZ», with positive Z, and
Z>, then

(V)| < (Be/4nRN Z:Zs f &y

Q
= 382Z122/ (ZR)
=0(R™) (small R). (38)

By the uncertainty relation the relative momentum is

(Ipl)=n0(R™) (39)
and the kinetic energy of relative motion is
Hy)y=(#/2u)0(R™2). (40)

Therefore if the magnitude of the potential energy
becomes very large, and the potential energy negative,
the kinetic energy of relative motion becomes even
larger and positive, For (V) to be unbounded (H)=(H,’)
~+(V) would have to be unbounded, and this contradicts
our initial assumptions. Any redistribution of p(r)
within Q merely increases the kinetic energy even more
than it decreases the potential energy. The argument is
unaffected if the number of particles becomes large, so
long as it remains finite. Thus (V) is bounded.

Therefore S(¢) is an almost periodic function of time
when the particles interact through potentials which
have repulsive singularities no stronger than »~% and
attractive singularities no stronger than !, and the
H theorem is then false.
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VII. DISCUSSION

Isolated finite quantal ensembles are essentially
almost periodic, and not irreversible; this almost perio-
dicity is not removed by coarse-graining. There is a
reccurence for ensembles of quantal systems similar to
Poincaré’s recurrence for individual classical systems.
For example, an ensemble of quantal systems each con-
sisting of &V identical particles all of which are in one
half of an infinitely heavy perfectly reflecting cylinder
at time zero, will be found after some long interval of
time 7 in a condition in which all the particles are in
the same half of the cylinder for nearly every member
of the ensemble, and this same time T" will be sufficient
however many systems there may be in the ensemble.
For systems of macroscopic size this time will be very
long indeed, and much longer than the time of an
ordinary experiment. However, we have shown that
ensembles of finite isolated quantal systems can tend
to equilibrium only over a finite length of time, and no
theory of their irreversibility can be entirely satisfactory
if it does not take this into account.

For sufficiently small systems it might be possible to
detect the periods experimentally. They are essentially
quantal periods.

The disproof of the H theorem breaks down for
systems with continuous spectra in general, and for
classical systems in particular, unless the latter are
linear and finite. There are some classical ensembles
at least which approach equilibrium and then stay
there. For instance consider an ensemble in which each
member system is a single anharmonic oscillator. At
time ¢=0 let the system have a Bolzmann energy dis-
tribution, but a nonequilibrium distribution in the
two-dimensional phase space. For instance in the case
of simple pendulums with finite amplitude they could
all be vertical at time {=0 with a Gaussian velocity
distribution. The representative point in phase space
of each system then cycles around a suitably chosen
origin with a period depending on its energy. This is
mathematically equivalent to Gibbs’ model of a cylinder
of liquid.’® The coarse-grained entropy increases to its
equilibrium value, and stays there. For the quantal
analog of the foregoing classical ensemble, the entropy
is almost periodic, whatever the initial distribution.
Thus there is a basic difference between the classical
and quantal statistical mechanics of isolated finite
systems.

Although we are unable to come to any general con-
clusions regarding the classical H theorem, it can be
stated that any “proof” of the theorem which can be
generalized to quantal statistics is necessarily invalid
for finite systems and arbitrarily long times.
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It is shown that a class of Schwartz distributions on the real axis can be continued to holomorphic functions
in the upper and lower complex half-planes such that the “jump” on the real axis represents the distribution.
Many operations with distributions can be reduced to operations with the associated holomorphic functions
which is of particular interest for the convolution product and for Fourier transforms, By means of the
continuations several kinds of multiplications for distributions are being defined, which is of interest for

quantum field theory.

I. INTRODUCTION

HE theory of distributions of Schwartz! generalizes
the notion of (ordinary) ‘“function” such as to
include measures and other ‘“‘generalized functions.”
The notion of “distribution” comprises various quanti-
ties occurring in physics that are not functions in the
ordinary sense; for example, Dirac’s 8 function, causal
functions, and the vacuum expectation values in
quantum field theory. Schwartz’s theory serves well
for the problems of physics except in the case where
products of these quantities occur (for instance products
of causal functions) for which it does not account.
(Compare Akhiezer and Berestesky? and Bogoliubov
and Shirkov.?)

Schwartz defines a distribution space as the dual of
a linear space of ‘“‘test functions,” such as the space
(8) of all (C*) functions or the space (D) of all (C*)
functions with compact support.

Another approach (compare Lighthill* and the
bibliography there) is to define distributions as the
limit quantities of sequences of functions [8(x), for
instance, is represented by the approximating functions
(n/%)? exp(—na?)].

In this paper we suggest a third approach: We
associate with a distribution on the real axis a pair of
holomorphic functions in the complex plane, one
function holomorphic in the (open) upper half-plane,
the other holomorphic in the lower half-plane. The
limit of the sum of these two functions at x+ie¢ and
x—1e, e— 0, x on the real axis, represents the distribu-
tion. Every distribution with compact support (and
certain others) can be represented in this way. (We
denote the associated holomorphic functions as “ana-
Iytic continuation” of the distribution.)

* The work was finished at the University of California,
Berkeley with support of the Office of Naval Research.

1 L. Schwartz, Théorie des distributions, Vol. 1 and 2. Actualités
sci. et ind. No. 1091 (1950) and 1122 (1951).

2 A. 1. Akhiezer and V. B. Berestetsky, Kvantovaya Elekiro-
dinamike (Moscow, 1953) (English translation: U. S. Atomic
Energy Commission).

3N. N. Bogoliubov and D. V. Shirkov, Introduction to the
Theory of Quantized Fields (Interscience Publishers, Inc., New
York, 1959).

4 M. J. Lighthill, Introduction to Fourier Analysis and Generalized
Functions (Cambridge University Press, New York, 1958).

This technique has an advantage: operations with
distributions can in many cases be replaced by opera-
tions with concrete analytic functions. For example,
a distribution T (defined on the real axis) applied to a
test function ¢ can be written only symbolically in the
form of an integral

o0
T-¢= f T(x)¢(x)dx,

where T'(x) has no independent meaning. By using the
analytic contipuation [denoted by T!(z)] one can
replace the symbolic integral S~ t=T(x)¢(x)dx by the
ordinary contour integral fc,T'(z)¢(z)dz [for holo-
morphic test functions ¢(z), C, consisting of a line
above and a line below the real axis].

The analytic continuations of several distributions
of interest in physics such as Dirac’s § function and
its derivatives, the &, function, and P(1/x) (principal
part of 1/x), are given as examples and various com-
monly used identities connecting these distributions
are easily established rigorously. The idea to continue
functions and distributions to analytic functions is an
old one. A beautiful exposition (for functions only) is
given in Carleman.? Schwartz® continues Laplace
transforms of distributions. Similarly the #-fold vacuum
expectation values studied by Wightman?-® (Wightman
functions) are Fourier transforms of quantities vanish-
ing outside the light cone which implies that the
Fourier transform converges not only on real space-time
but in the “forward tube” as well. It defines a particular
type of analytic continuation of a distribution. Similar
techniques are used in dispersion relations (compare
Bogoliubov, Medvedev, and Polivanov® and Bremer-
mann, Oehme, and Taylor.®

57T. Carleman, L’integrale de Fourier et questions qui s’y rai-
%z}cl};entI(IAImqvist & Wiksells Boktryckeri-A.-B., Uppsala, 1944),

6 II,) Schwartz, Medd. Lunds Univ. Mat. Sem. Suppl. M. Riesz
196 (1952).

7 A. S. Wightman, Phys. Rev. 101, 860 (1956).

8 A. S. Wightman and D. Hall, Kgl. Danske Videnskab. Selskab
Mat.-fys. Medd. 31, No. 5 (1957).

®N. N. Bogoliubov, B. V. Medvedev, and M. K. Polivanov,
.fgrgggems in the Theory of Dispersion Relations (Fizmatgiz, Moscow,

0 H., J. Bremermann, R. Oehme, and J. G. Taylor, Phys. Rev.
109, 2178 (1958).
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Also, Kothe!! observed in 1952 that, given a finite
closed curve C in the complex plane and a distribution
on the curve, a pair of holomorphic functions can be
associated with the distribution, one function holo-
morphic in the intetior of the domain bounded by the
curve, one holomorphic in the exterior. Tillmann!?
generalized this theory to unbounded domains (such as
the half plane). Similar results have also been obtained
by Sato.?

Having applications to physics in mind, we limit
ourselves to distributions on the real axis and use
straightforward methods rather than the elegant
language and techniques of Banach spaces extensively
employed by Kéthe, Tillmann, and Sato.

The product of two arbitrary distributions is in
general undefined in the theory of Schwartz, the
symbolic integral S~ S (%) T (x)¢(x)dx having a well-
defined meaning only if in the neighborhood of each
singularity of S(x), T(x) is “‘smooth” of at least the
order of the singularity of S(x). By using the analytic
continuation of a distribution, various ways to defin€ a
multiplication for arbitrary distributions suggest them-
selves. These possibilities appear to have applications
relative to the divergence difficulties in quantum field
theory arising from multiplication of singular distribu-
tions (compare Bogoliubov and Shirkov® and Bogoliu-
bov and Parasiuk'¥). These applications are to be
discussed in a forthcoming paper by Bremermann,'®
together with applications of results on Fourier trans-
forms obtained here.

Following Carleman,’ we define the Fourier transform
as follows: We split the integration into f5® and
J-. The first integral gives a function holomorphic
in the upper half-plane, the second a function holo-
morphic in the lower half-plane. An important result is:
If fis a square integrable function, then this pair of
holomorphic functions coincides with the analytic
continuation of the ordinary Fourier transform of f
(and this result can be extended to include tempered
distributions). Various results are established and the
Fourier transforms of such functions as 8,.(x), P(x"),
e(x) are computed as examples. Carleman’s work,
which was done before Schwartz’s theory was developed,
is limited to L? and L? functions. The methods become
more powerful when applied to distributions. Our
results of Sec. IX are closely related to Schwartz.®

This paper is limited to the case of distributions on
the real axis. An extension to higher dimensions
(involving functions of several complex variables) is
possible, but some new difficulties arise. The authors
believe that the method of analytic continuation holds
great potential for applications, some of which (to

it G, Kéthe, Math. Z. 57, 13 (1952).
2 H, G. Tillmann, Math. Z. 59, 61 (1953).
13 M. Sato, Proc. Japan Acad. 35, 126 (1958).

( “51;1). N. Bogoliubov and O. S. Parasiuk, Acta Math. 97, 227
1957).
18 H. J. Bremermann, ONR Rept. No. 8§ (1959).
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differential equations and in particular to electric
networks) will be discussed in a future paper.

II. SCHWARTZ DISTRIBUTIONS

In the following we summarize some of the basic
definitions of Schwartz’s “Théorie des distributions”.!

Distributions are defined as linear functionals operat-
ing on a space of “test functions.” Different spaces of
test functions give rise to different distribution spaces.

In any case the test functions are complex valued
functions ¢ (x)=¢(x1,- > -x,) of n real variables that
are m times continuously differentiable [“of class
(C™], with 1<% <o and 0<m< . In most cases
the test functions are taken to be indefinitely dif-
ferentiable [ (C*) functions].

The variables #i, - - -x, range over the n-dimensional
Euclidean space R*. The test functions ¢ (x) are defined
on all of R*. The complement of the largest open set
where ¢(x) is zero is called the “support of ¢(x).”

Schwartz considers also the case in which the ¢(x)
are functions on a differentiable manifold. In this
paper we will limit ourselves to the R

Space of Test Functions (D)

(D) is the vector space of all (C*) functions on R*
that have compact support. Convergence is defined as
follows: A sequence {¢;} is said to converge to zero if
all the ¢; have their support contained in a fixed
compact subset of R* and if the ¢; as well as all their
derivatives converge uniformly to zero. (Uniform
convergence is required for each fixed order of the
derivatives, not for all orders collectively.)

Space of Distributions (D')

A functional T on (D) is an operation that associates
with every ¢& (D) a complex number. We denote this
associated number by T-¢.

A functional T on (D) is kneoar if:

(@) T+ (¢1t¢2)=T-¢1+T -, for every ¢, p&(D);

(b) T-(kp)=kT-¢ for every ¢=(D) and every
complex number k.

A functional T is continuous if T-¢; converges to
zero for any sequence {¢;} of functions ¢;& (D) that
converges to zero in (D) (as defined earlier).

A distribution, as defined by Schwartz, is @ continuous
linear functional on (D). The space of all distributions is
denoted by (D) and is the dual space of (D).

Support of a Distribution

A distribution T is said to be zero in an open set Q
of R if T-¢=0 for all test functions ¢ (D) whose
support is contained in Q.

The support of a distribution is the complement of
the largest open set in which T is zero.
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Space of Distributions (&)

Let (&) be the vector space of all (C*) functions on
R* with arbitrary support. Convergence in (8) is
defined differently from convergence in (D), as follows:
A sequence {¢;}, ¢;&(8), converges to zero if the ¢;
converge to zero uniformly in every compact subset of
R, and the same is true for the derivatives of any
order. (Again uniform convergence is required only
for fixed order of the derivatives, not for all orders
collectively.)

This notion of convergence is weaker than the
convergence defined for (D) and it generates a true
topology as follows: Let ¢¢ be a fixed function in (8).
Then we define as neighborhoods the sets {¢||¢® (x)
—¢oP(x)| <e for s€K, p<m}, where ¢>0 and K
is a compact set and m an integer>0 (¢ denotes the
pth derivative). It is easy to see that this definition
generates a topology, and a sequence is convergent in
this topology if, and only if, it is convergent as just
defined.

The dual space of (&), that is, the space of continuous
linear functionals on (&) is denoted by (&’). Schwartz
has shown: (&) consisis exactly of those distributions in
(D) that have compact support.

Generalized Function Notion

It is sometimes convenient to write a distribution as
an integral over a “generalized function”:

T-g= f T(x)6(x)d,

where the integral and the “symbolic kernel,” or
“generalized function” T'(x) are defined by this equa-
tion. The Dirac é function and the causal functions in
quantum field theory are usually written in this form.
On the other hand, if T(x) is given as a summable
function, then the integral J_ T (x)¢(x)dx defines
a distribution, which, again, we denote by T-¢.

Principal Part of x—

The function %! is not integrable at the origin and
therefore does not define a distribution in (). How-
ever, it is possible to define a “principal part of x1,”

denoted by P(x) as follows:

Pf+w1()d i lf+w()(1+1)d
L AW B PN )

for all ¢(x)E (D).

To show that this defines a distribution in (D) let
us first observe that due to the fact that any ¢& (D)
has compact support, we can limit the integration
from —  to 4 to integration over any finite interval
{a,b} that contains the support of ¢. Let us choose
a,b70.

BREMERMANN AND L. DURAND,
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Since ¢ is a C* function we can develop it into a
finite Taylor series
¢(x)=¢0)+¢'(0)2x+[o" ¥x)/2!]s*, 0<#<1.

We see that
[o(x)—9(0) )/«

is a continuous (even C*) function. Hence
1 1
—+ )dx
x-t+ie x—1ie

fb¢(x)—¢(0)
= =

a X

i3 bt¢cx>—¢<0):1(

exists as an ordinary integral. Thus only

be%o—)dx

remains to be determined. We obtain

b 1 1
lim 6 (0% [ ( + )dx
0 . \xtie 2x—1ie

0
= 1!1_1’.1} (b;—)[log(b—l—ie)—{—log(b—ie)
—log(a+ie)—log(a—7te)]

Hence P /:*(1/x)¢(x)dx is well defined for every
¢6< (D), and the integral depends linearly and con-
tinuously upon ¢, thus P(1/x) defines a distribution in
(D).

The integral P J_t*(1/x)$(x)dx converges even if
¢(x) vanishes only linearly at infinity (rather than
having compact support). This can be seen by splitting
o(x)=¢1(x)+¢2(x), where ¢ and ¢: are both (C=)
functions, ¢; with compact support and ¢, vanishing
in a neighborhood of the origin. In particular we get

1 o1 1 !1/2z
—(1/22) for Imz<0.

for Imz>0,

2t J_ xx—3

This follows from the fact that for >0

1 pt= 1 1d Il/(z+'ie) for Imz>0,
27

— x=

o Xtiex—2z 0 for Imz<0;
and

for Imz>0,

1 o1 1 0
L e
20t Vo x—iex—3 —[1/(z—1ie)] for Imz<0,

(Cauchy’s integral formula).
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Completely analogously a principal part can be
defined for ™", # an integer and #>0 by

Ll |
P —o¢(x)dx
— X"

= lim & - ! 1 ! (x)d
- *—u’%if_w [(:X:—[—ie)"| (x——ie)"]¢ ne

- In particular, we get

1 te1 1

21 YV X"X—2

{ 1/(22n) for Imz>0,

—[1/(22n)] for Imz<0.

III. ANALYTIC CONTINUATION OF DISTRIBUTIONS

The Cauchy integral has the “reproducing property”

{ f(z) for2ED,

1 1
— — dt=
) © : 0 for 3D,

271 Jap —z

D a domain in the complex z plane, f(z) holomorphic in
D, continuous in D. If under the integral we substitute
for the holomorphic function f an arbitrary function
g, then

1
F(2)= 2yt f ¢()—dg

oap (—2

is still a holomorphic function in D, but in general
F(z)#£g, that is, the integral no longer reproduces g.
In the following we will study the relationship between
F(z) and g, not only if g is an arbitrary function, but
if g is a distribution. As dD we will take the real axis,
hence D is the upper or lower half-plane.

Theorem 1. Let T be a distribution with compact
suppori. Then

To(z)=(1/2xi)T- (x—2)"

exisis and is a holomorphic function of z in the whole z
plane minus the support of T. For z— o, T(z) tends
fo zero.

We will call T%(z) the “Cauchy inigral of T.”

Proof. (This result can also be derived from Schwartz,!
Vol. 2, theorem 11.) For Imz#0 the function (x—2)~!
is a (C*) function with respect to %, and is thus a
function in (&). Hence, T (x—2z)~" exists for any z
with Imz0.

To show that it exists also for z in the complement of
the support of T" we make use of a remark by Schwartz
(Vol. I, Chap. III, Sec. 7):

Let a(x) be a (C*) function such that a(x)=1 for
% in the support of T. Then

T-(a¢)=T-¢
for every ¢& (8).
Let N be a neighborhood of the support of T, C(¥V)
the complement of N on the x axis. Let a(x) be a (C*®)
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function such that
a(x)=0 for x&C(N)
a(x)=1 for x in support of 7.
[Such a(x) obviously exist.] Then
a(@)(x—z)7
is a (C*) function for every zfN. Hence
T (x—2) =T [a(x) (x—2)1]

exists for every 2€EN.
Secondly, we have to show that T°(z) is holomorphic.
We have

3 o o
@)= lim i TG+ 1) = T()]

= lim i-—l-T'oz(x)[ ! __L]

h=0 2t h x—2—h x—3
1 a(x)
= lim—T —————
=0 2mi  (x—2—h)(x—3)

If 2¢EN, then the function
or=a(x)/(x—z—h)(x—z)

converges for #— 0 uniformly on the whole x axis to
a(x)(x—z)~2% Similarly, (d/dx)¢s converges uniformly
to (d/dx)a(x)(x—2z)~%, and the higher derivatives
converge correspondingly.

Therefore, T-¢, converges to T-a(x)(x—2z)2=T
- (x—32)~% This shows that the complex derivative of
T°(z) exists for every z€&EN, hence that T°(z) is holo-
morphic in the whole z plane minus the real axis. But
since N was an arbitrary neighborhood of the support
of T, T°(z) exists and is holomorphic in the whole z
plane minus the support of 7.

For z— o the function a(x)(x—z)~! tends to zero
uniformly, together with all its derivatives. Con-
sequently, because of continuity, T°(z) tends to zero
for z— . This completes the proof.

Corollary. If T (&), then TO(z) vanishes at least as
Alz| for |z] — .

Indeed, TO(z) is holomorphic outside a sufficiently
large circle, hence has a Laurent development :

1 1
T(z2)=avtar—+ar—+-- -
2 2?

But from theorem 1, limit as z—» o T'()=0. This implies
that ¢o=0, and the corollary follows immediately.

Theorem 2. The nth derivative of the Cauchy integral
of a distribution T& (8') is equal to the Caucky integral
of the nth derivative of T':

an n!
—T(z) =To"™ (g)=—T - (x—3z)~" ..
Iz 2t
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Here T™ denotes the nth derivative of T in the
sense of Schwartz, and T™ (2)= (1/2wi) T™ - (x—3z)~.
In the proof of theorem 1 we have already shown that

d 1
—T(z)=—T (x—2)2.
9z 2
Similarly, one obtains for the #th derivative
a* nl
—T(z)=—T- (x—2)~"L,
az" 2w

On the other hand, the derivative of T in Schwartz’s
theory is defined by

T-¢=—T-¢".
Thus

T (x—2)'=—T-(d/dx)(x—2z) =T (x—2)72
and by iteration we obtain
T (x—2)t=n!T- (x~zy"L

This proves our theorem.

Relation between T and T°(z)

If T'(x) is the restriction of a function f holomorphic
in the upper half-plane which behaves like [z~ for
z— o for some a>0, then T°(z)= f(z) in the upper
half-plane and T°(z)=0 in the lower half-plane. [In
theorem 1 we had assumed that 7" has compact support.
This is, of course, a sufficient but not necessary condi-
tion that T9(z) exist. We will discuss the general case
of noncompact support later.] If f(z) is holomorphic
in the lower half-plane, we find similarly that T°(z)=0
for Imz>0 and T9(z)=-—f(z) for Imz<0. Thus, if
T(x) is a function analytic in either half-plane, then
the “jump” of T'(z) on the real axis is equal to T'(x).
We will show that this latter property holds not only
when T'(x) is analytic, but that it holds for general
distributions.

Theorem 3. If T'(x) is a (C*) function with compact
support, then for e— 0+ [TO(x+ie)—TO(x—ie)] con-
verges uniformly lo T(x) on the whole real axis, and the
same 1is true for the derivatives up to nth order. If T is a
distribution in (&'), then [T°(x+ie)—T(x—ie)] con-
verges for €0, € — 0 to T in the following sense:

o0
T-g= lim f [T (i) — T (—i€) o (x)dx

for every test function $& (D).

Proof. Let us first consider the case in which T'(x) is
a continuous function. To demonstrate the uniform
convergence, we need an estimate of the quantity
| To(x+i€e)—To(x—ie)— T(x)| for e— 0. We have by
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definition

T(x+ie) — TO(x—i¢)

2nt

+o 1 1
T@[ _ _ ]ds.
— E—x—1e E—xt1e

We split the range of integration as follows:

To(x+-i€)— TO(x—z¢)

=2—7;l f f + f; ]T(s)———~d{£_iz;e[2 £,

where 6 is an arbitrary positive constant. Since 7'(x) is
continuous and has compact support [T€(&)], it is
bounded, {7'(x)| <M for all . Let L be the length of
the support of 7. Then the integrals over the intervals
{—o,x—8}, {x+5, +=} are together smaller in
absolute value than (2M Le)/82.

In order to discuss the integral over the interval
{x—5, x+35}, we split T(¢) into real and imaginary
parts, T(§)=ReT(§)+47 ImT(¢). Then

o>+d

ReT(§)———dt
2—8 | E— x+745 l 2

_ ReT(io)f —*_—d[ PR

for some &E{x—6, x+08}. We can now write

o+ 1 1
Il Jo-
23 LE—x—1i€e E—xtie

where T is the contour consisting of the directed line
from x—8—1e to x+06—ze and the line from x+384ie to
x—0+1e. In order to make I' a closed curve I'*, we add
the integrals from x—&-+7¢ tox—8—seand from x+56—7e
to x--6-+1ze. These two integrals are together in absolute
value less than 4¢/8. Now Ji[z—x 1 'dz=2mi. There-
fore,

1
—dz,
r3—x

1 o+ 2ie
ReT (x)—— f ReT(S)—-—df
P

i | E—x—1e|?

2M e
<|Re[T(x)—T(£) ]| +—-,
x* &

and analogously we obtain the same estimate for
ImT (x).

& lies in the interval {#—3&, x+68}. Let m(5) be the
largest variation of T'(x) in any interval of length 25.
Since T(x) is continuous and of compact support,
m() —0 as § 0. Thus |Re[T(x)—T(£0)]| <m(d),
and we obtain as a total estimate

| TO(x4-ie)— T (x—ie)~ T ()|

<

M-L-¢ 4M e
+2m(8)+—-.
2 T 0

7o
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If we choose é=e¢}, then the right-hand side tends to
zero for e— 0. The estimate is independent of x. Hence
To(x+1¢)— TO(x—1ie) converges to T'(x) uniformly for
all x, as asserted previously.

If now T'(x) is a (C™) function, then we can apply the
result just proved to the derivatives T for » <m.
On the other hand, we have by theorem 2

a7 1 oo i
—[T°(2) }J=— T (x)—dx.
ir 27 x—3

~00

Consequently,

[6 T°(x+ze)——T°(x—ze)] 70 (x)
dz"

and the convergence is uniform on the whole real axis.
This proves our theorem for the case where T'(x) is a
(C*) function.

Proof of the general case. If T is an arbitrary distribu-
tion of compact support, then the limit in the ordinary
sense in general does not exist. Instead we have to show
that

+o
lim f [T0(x4-i6) — T (—ie) b (w)da=T-

for every test function ¢& (D). Since T%(z) is holo-
morphic for Imz#0, and ¢ has compact support, this
integral exists. Let

I(9= f [To(x-tie)— To(x—ie) Jo (x)dn

1 pt 1 1
=;f_w ¢(x)T$.[£-—x—ie E—x-{—ie]dx
o0
o ()

1 ~ ( e )
| —xptie|2/]

= lim — 3° Aw(ox) T
N0 Qe k=1

We would like now to exchange the integration and

the application of 7. Because 7T is linear we can write

DT A
(E_Nl‘{&" i 1r'lk=1¢x}c xk | £—atie|2/ |

The bracket to which T is applied is a test function in
(8) which converges uniformly to ¢%(£41i¢)— ¢°(E—ie),
where ¢°(z) is the Cauchy integral of ¢(x). The deriva-
tives with respect to ¢ likewise converge uniformly.
Therefore, from the definition of continuity in (),
we obtain

(=T [¢°(+ie)— ¢*(£—ie) ]
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¢(x) is a (C=) function; consequently [¢°(£+ie)
—¢%(§—1e)] converges uniformly to ¢(£), together
with all derivatives, as we have proved. This permits
us to exchange once more the application of T and the
limit:

lim 7(e)= lim T [¢°(¢+ie)—¢°(—ie) J=T"¢.

Thus I(e) converges to T-¢ for every ¢& (D). This
proves our theorem.

Examples.

1. Dirac’s § function is defined by

+0
f 5()(x)dr=0(0) for all $E(8).

The Cauchy integral of é(x) gives

+w 1 1
§(x)——dx=——u.
x—3z 2miz

1
() =—
T Yo

2. Derivatives of the & function: §%™(z)=(d"/dz")
X 8%(z) [theorem 2. Thus,

(—1)"Hn!

60(11) (z) =

Ui gl

3. Finite step function:
Oap(x)=1 for a<x<b;
O p(x)=0 for x<aand b<x.

1 LIS | 1 b—z
0%, 5(2)=— f ——dx=— log—.
2m J, x—2 27 a—z3

0% 5(2) is analytic in the cut z plane, with the cut
connecting a to b. ®°; ;(z) can be continued holomorphic-
ally across the cut from a to b, except at the end points.
This continuation leads, of course, to a multiple valued
function. However, we must choose that branch of
log[ (6—2)/(a—z)] that approaches zero at infinity
[theorem 1].

4. Let T be a distribution whose support consists
of an isolated point a. Then, according to Schwartz!
T is a finite linear combination of Dirac’s § functions
and its derivatives:

N
T{x)= Y a8 V(x—a).

y=1
The Cauchy integral is consequently given by

N 1)’ (»—1)!
9= 5 0 e gym $ e,

y=1 27l"l =1

if we denote a,(—1)"(»—1) 1(2xi)~! by a,*. Thus T°(z)
is a finite polynomial in 1/(z—a).
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3. To every distribution 7' with compact support
there corresponds a function holomorphic in the whole
z plane minus the support of 7T, and tending to zero
at infinity.

It is natural to ask whether the converse is true:
Given a function f(z), holomorphic in the z plane minus
a compact set o on the real axis and satisfying f(z) — 0
for z— o, does there exist a distribution with support
o such that TO(z)= f(z)?

The answer is negative. The function e/?—1 is a
counter example: e/*—1 tends to zero for z— «, and
is holomorphic except for the origin. If there would
exist a distribution T such that T0(z)=¢s—1, then T
would have to have as support the origin, that is an
isolated point. Hence, according to the preceding
example,

N
()= X o*,

pe=]
where N is finite. On the other hand, we have

w 1
e—1= 3 —z,
y=1p]!

where the sum goes to infinity. Hence there does not
exist a distribution T such that T0(z)=¢/s—1.

[Tt can be shown, making use of Schwartz® that in
general T°(z) cannot have worse than “polar behavior”
on the real axis. ]

IV. “TOTAL VALUE” OF A DISTRIBUTION AS A
GENERALIZED RESIDUE OF T9(z)

T-1, that is a distribution applied to the test function
o(x)=1, is called the “total value” or “integral” of
T (Schwartz,! p. 88).

As a first demonstration of the usefulness of T0(z)
we have:

Theorem 4. Let T be a distribution with compact
support. Then

T 1= f  P(a)dn= f To(z)ds,
0 Co

where Co is any simple closed curve circling the support
of T clockwise.

If T has compact support 3, then we can restrict the
integration from — « to + o to an integration over Y_.
Intuitively theorem 4 means the following:

If we replace T'(x) by T°(z), then by theorem 3
J3T (x)dx is replaced by two integrals: One integral
over the “upper value” {limit as e— 0+ T°(x+1ie)}
integrated over ) in positive direction plus the integral
over the “lower value” {limit as e— 0+ T°(x—1ie)}
integrated along 3~ in the negative direction.

The integration appears thus as an integration over a
curve shrunk to an upper and lower layer along 3.
But since T°(z) is holomorphic in the whole z plane

BREMERMANN AND L.
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minus ), we may deform the curve without changing
the integral.

This idea can be made rigorous as follows. Let 3’
be a neighborhood of Y. We take >’ to consist of
finitely many intervals. We then can treat each one
separately. We thus will assume in the following that
>/ is an interval: > '={a,b}.

b b
f T@dz= lim f [T (3+-ie) — T (x— ie) Jdw.
Thus for >0 sufficiently small,

b b )
j; T (x)dz— f [To(o-+io)— To(e—ie) s| <

for any 6>0. However, we can write the integral
ST (x+ie)—TO(x—ie) Jdx as JSeTO(z)dz, where
C(o consists of the lines from g+7e to b+%¢ and b—ie
to a—ie. To obtain a closed contour, we add the integral
over T(z) from a—ie to atie and b+ie to b—ie
Since T°(z) is holomorphic, hence bounded along these
paths, this addition will be smaller than §/2, if ¢ is only
made small enough. Thus with C(* the completed
contour,

<

f bT(x)dx—— f T(z)dz
a Clo*

for sufficiently small e. But since T°(z) is holomorphic
in the {z plane}—)_, we have at once

To(z)dz= f To(z)dz

Cce*

for any given curve Co in ({z plane}—>_) that is
homologous to C»*, that is for any simple closed curve
circling 3 clockwise,

Therefore,
b
f T (x)dx— f T(2)dz
a OM

does not depend upon e. It is smaller than any 6>0.
Hence the two integrals are equal.
Theorem 4 is obviously a generalized residue theorem.
Examples.
1. T(x)=28(x)+d'(x). Then

<é

1 1
To)=———+

2wz 2mwiz?

The support consists of the origin. Hence

1 1 1 11
T-1=———f (———)dz=Res(——-—)=1.
2mi Jeo\z 2 3 2
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2. Let T have support at a finite number of isolated
points a;, - - -@n. Then (compare example 4 of Sec. 3)

1 m N
’p(z) = Z Z apv(z— a“)-—v'
29t p=1 =1

Then

T-1=sum of residues of T(z)= Y a,.
p=1

V. DISTRIBUTIONS WITH NONCOMPACT SUPPORT

The function (x—z)~! (for Imz5<0) belongs to (&)
but not to (D), and consequently T'-(x—z)~! is not
defined for all T& (9). On the other hand, T (x—32)!
does exist for certain 7€ (D’) that are not in (&), and
that includes important cases such as.

T(x)= (x+ie™; T@)=Pl™),

Since neither (') nor (&) nor any of the other
distribution spaces defined by Schwartz suits the
problem of studying T°(z), we will introduce in the
following a new space:

Definition 1. Let (V) be the subspace of all ¢& (&)
which have the following properties:

¢(x)|x| <K,
™ (x)|x| <K, for x — oo,

n>0.

for |x| — o,

where Ko, K1, K,---are constants. Let convergence be
defined as in ().

The corresponding distribution space, which we denote
by (V'), is the dual space of (V).

Remark. In the definition of (V) we include the
boundedness condition for the derivatives ¢™ of ¢
to insure that 7 .¢= (—1)*T-¢™ is defined.

Lemma 1. Theorems 1, 2, and 3 remain true if
T& (&) is replaced by TE(V'), and (in theorem 3)
“uniform convergence on the whole real axis” is replaced
by “uniform convergence on every compact interval of the
real axis.”’

Theorem 1 asserts the existence and analyticity of
To(z)= (1/2mi)T- (x—z)L. Since (x—z)& (V) for
Imz0, and since (x—3)~! — O uniformly for 2| — o«
and x in a compact subset of the real axis, T°(z) exists
for all T&(V’), and T°(z) >0 for |z[ — . The
analyticity of T°(z) outside the [possibly unbounded]
support of 7 follows exactly as for 7€ (§’). Theorem 2
follows as before and from the observation that
(x—2)"& (V) for all #>1, Imz70.

To extend theorem 3 we have to show that for
continuous functions T'(x)& (V')

[To(x+ie)— T (x—ie)— T(x)]

converges uniformly to zero for x in any compact
interval on the real axis. If this has been established,
then it follows immediately that if T'(x) is a (C™)
function in (V’), then also the derivatives up to nth
order converge uniformly.
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No change of the proof in the ‘general case”:
ST [TO(x+ie)— TO(x—ie) Jp (x)dx — T-¢ is neces-
sary since we assume that ¢& (D).

To show the uniform convergence of T°(x-ie)
— TO(x—1¢) for continuous 7T'(x) we proceed as follows:
Let ar(x) be a (C*) function with the following
property:

ar(x)=1 for x| <R
0<ar(x)<1 for R<|x|<2R
ar(x)=0 for || >R.

Let
Tr(x)=ar(®)T (%),

then Tg(x) has compact support.
T(x)—Tr(x)=T(x)[1—ar(x)].

Let
Br(x)=1—ag(x).
Then
Br(x)=0 for || <R
0<Br(x)<1 for R<|x|<2R
Br(x)=1 for |x| >R.
We have

To(z)— T&(z)= (27i) T Br(x) (x—2z)~L

Let D be any compact domain of the z plane (which
may or may not intersect the real x axis). Then for
all sufficiently large R, Br(x)(x—z)! is a (C*) function
in (V') for all 2&D. For R— » the functions 8g(%)
X (x—2)"* converge to zero, uniformly in x and z, for
% in any compact interval of the real axis, and for & D.
Hence

To(z)—Tx(2)

converges to zero for R — o, uniformly for all zED.
Now, since T'p has compact support,

TR"(x-I—ie)— TR°(x—-ie) - TR(x)

uniformly on the whole real axis. Also, given any
compact interval on the real axis, then Tg(x)=T(x)
in the interval for all sufficiently large R. By combining
the two uniform convergences, we obtain that

TO(ax+ie)— TO(x—~ie) — T(x)

uniformly in every compact interval on the real axis,
which was to be proved.

Definition 2. Let TE (V). Then we say: “T(x)
vanishes for |x| — o« if for every ¢>0 there exists an R
such that |T-¢|<e for every ¢& (D) which has the
Sfollowing properties: (1) ¢(x) >0 for all x; (2) the support
of ¢ is contained in {x||x| >R}, and 3) St2¢(x)dx
=1.

If T'(x) is a function which vanishes for || — «,
then we can find for every ¢>0 an R such that for
|| >R, |T(x)| <e Then, if ¢ is a test function with



248 H. J.

the three properties stated,

+0
ef d(x)dx=¢;

—0

+o0
f T (x)¢{x)dx| <

—0

and conversely, if a function 7'(x) vanishes in the sense
of definition 2, then it vanishes in the ordinary sense.
Our definition of the meaning of the ‘“vanishing of 7'(x)
at infinity”’ is therefore an extension of the usual
notion for functions.
Corollary. If TE (V’), then T (x) vanishes for |x|— .
By theorem 3 we have for ¢& (D)

4+
f T(x)p(@)da

—o

oo
= lim f_ | [P(eria) =T W@

From theorem 1 it follows that T°(z) — 0 for z— .
Hence we can find for every ¢>0 an R such that
| T°(z) | <e/2 for |z|>R. It follows that

40
IT-¢|<e f o(@)dr=c

for ¢ with the properties previously described. Hence
T'(x) vanishes in the sense of our definition.

While T(x) — 0 for |x| — o is a necessary condition
that T'(x) belongs to (V'), it is not sufficient, as the
Sfollowing example shows:

T(x)=1/log(1+]])

tends to zero for |x] — «. However,

f+R dx
& |%| log(1+]x|)

does not converge for R — «, since log(1+ | x| )behaves

as log|x| for large |x|, and /"1/x logxdx=1log logx.
Sufficient condition. Let T(x) be a summable function

such that there exists an a>0 and a constant A such that

|x|*|T(x)| <4 for |x| — .

Then T belongs to (V'). The proof is immediate. Since
T(x) behaves like A|x|~= for large |x|, T(x)¢(x)
behaves like AKo|x|=~ for ¢(x)& (V) [definition 17,
Thus /- 7*T(x)¢ (x)dx converges, and TE& (V).

Examples. A number of distributions which are
encountered frequently in the problems of physics and
which are not contained in (&’) are contained in (U’).
The following are examples.

1. T(x)=P(x"), n>1, n integer. Then

+o 1
’I‘O(z)——-—P f — —dx
x" x—2
= 1/22" for Imz>0
=—1/2z" for Imz<0
(compare Sec. 11, example 2).

BREMERMANN AND L.
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2. T(x)=1/(x+1e), e>0.

T(x) is the restriction to the real axis of a function which
is holomorphic for all z except for z= —ie. Thus,

To(z)=1/(z+1ie) for Imz>0,
and
To(z)=0 for Imz<0.

3. 64(x) is defined as follows:

o (x)=—— 11m (
* i M \x-+ie

From the preceding example, we see that
$,02(z)=— (1/im)(1/2) for Imz>0,
8,9(2)=0 for Imz<0.

4. In physics one makes use of the

identities”
1
=P(—) —imd(x)
x

ixdy (—x)= lim 1_ =P(£)+i1r5(x).

0 x—1e

“symbolic

it ()= lim —
X+t1€

To prove these identities rigorously for the analytic
continuations we only have to make use of the examples
1-3.
5. From examples 1-3 we also immediately obtain
the identities
84 (%) 484 (—2)=20(x),

b4 (2) =8y (—2)= — (2/im) P(1/2).
VI. ANALYTIC TEST FUNCTIONS

and

In computing 71, the “total value” of a distribution,
we were able to replace the integral over the real axis
by a contour C, circling the support of 7. It would be
convenient if we could do the same in general, that is,
if we could write

o0
T.d).—-.

—o0

T(5)6 (x)dx= f To()g()ds.  (?)
co
This equality, however, does not hold in general. Indeed

T-4= lim f [To(x+ie)— To(x—ie)]

X[8°(x+ie)— ¢°(x—1ie) Jdx,
while

To(2) ¢°(z)dz

<0

00
- f [T0 (x4-5€) 69 (e-t-ie) — T0 (x— i) ¢ (w— i) Jd

(independently of ).
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The two integrals are obviously not equal in general.
They are equal if ¢(x) is the restriction of an analytic
function ¢(2) and if we replace ¢°(z) by ¢(2). [Note
that ¢°(z)#¢(2), if ¢°(z) is the Cauchy integral of the
restriction of ¢(z) to the real axis. ]

This leads us to consider distributions defined with
respect to the class of analytic test functions.

» Definition 3. We denote by (@) the set of all entire
Sfunctions, by (Qs) the set of all functions that are holo-
morphic in the strip {z| |Imz| <b}, where 0< b < .

We have (Q.)=(@), and for all b: (@)C (@) (8).

In the following sections, repeated use will be made of
several contours in the complex plane; we therefore
introduce the following notation.

Definition 4. By Cy we denote any simple closed curve
thatlcircles the support of the given distribution clockwise:

By Cp we will denote two lines parallel to the real axis,
both directed like the real axis, one above and one below:

S
o

e NN VAN AN NV AN et .

(" >
P

By C, we will denote two lines, one in the upper half-plane
and directed parallel to the real axis, and one in the lower

half-plane, directed opposite (antiparallel) to the real
axis:

5
. an

et
Ca. )

Finally we will denote the strip {z| |Im 3| <b} by Ss.
Theorem 5. Let TE (&), ¢ (Qs), 0<b< . Then

00
T-p= f T () (2= f T ()¢ (2)ds,

for any CoCSe.

The proof is analogous to the proof of theorem 4, as
is the proof of the following:

Theorem 5a. Let TE(V'), ¢& (Rs), 0<b< o, and
|p| <A|z|™ for z— . Then

T-¢= f To (@) (a)dz

for any CoC.Sh.

We note that |[¢| <A|z|! for z—  cannot be
satisfied by any ¢& (@)= (Q.).

Example. Let T(x)=8"(x), ¢(x)E (@s). Then T°(z)
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= (~1)"Hyu |/2xiz"*, and

» (—D)™ml o
f @i fc g (2)dz

e (i
= (—1)"n! Res[z27" ¢ (3) J,mo= (— 1) (0)

in agreement with the usual result.

Convergence in (Qp). We define convergence in (@s),
0<b< o, as follows: A sequence {p;(2)} of functions
0;(2)E(Qs) converges lo zero if it comverges to zero
uniformly in every compact subset in Sh.

The dual space of (Qs) we denate, as usual, by (@').

It has also been studied by Ehrenpreis.'®

Since (@»)C (8) properly, the associated dual space
(@) is larger than (&'). A similar situation was
encountered with respect to the set (V) of linearly
vanishing test functions, (V)C (&), the dual space
(V)D (&) containing many distributions of practical
interest. It is useful also in the present case to consider
the subset of linearly vanishing functions in (Qs).
This subspace consists only of the constant O for b=,
but it is nontrivial for 0<bs< 0.

Definition 5. We denote by (Q,¥) the subspace of
(@s) consisting of all ¢ (Qs) whick vanish lLinearly for

g —> 00
lp™(2)| <Ka|z|™t forz— o, 1#=0,1,2.--.

Convergence is defined as in (Q@s).

Obviously, (@)D (@) and (@:V)D(V’). The-
orems 1-3 and S5a hold for T&(Q,¥’) just as for
TE (V’). We note also that the condition T°(z) — 0 for
|2] — = is again a necessary condition for 7€ (@;"’),
0<b< o, while [T°(z)| <A4|z]%, [2] &> ©,a>0isa
sufficient condition,

VII. MULTIPLICATION OF DISTRIBUTIONS

To define a multiplication for distributions, it would
seem natural to write for a product ST

-0
ST-¢=f S(x)T(x)p (x)dx.

However, this definition leads to difficulties. For
example, T(x)=|x|~* is summable at the origin and
defines a distribution in ('), but [T(x)]* is not
summable. Even worse is S, t°8(x)é(x)dx. Since

” 28 (x)¢(x)dx=¢(0), one might interprete S—.,t5(x)
X 8(x)dx=25(0), but 5(0) is undefined. If §(x) is approx-
imated by ordinary functions, then the sequence
diverges.

Schwartz! has observed that ST is well defined if
locally S is “more regular” than T is “irregular.” If T
is a general distribution, then this condition means
that S has to be a (C*) function. In physical applica-
tions, on the other hand, ill-defined integrals over

16 Leon Ehrenpreis, Ann. Math. 63, 129 (1956).



250 H. J. BREMERMANN
products of §-like causal functions occur, which lead
to difficulties, notably in quantum field theory.

Schwartz!” has shown that it is impossible to have a
multiplication for distributions (not necessarily com-
mutative, but such that the product of two distributions
is well defined) that contains x, P(x~), and 1, and that is
associative. Konig has shown'* that if one gives up
some of these requirements, then there are many
possible “multiplication theories.” Bogoliubov and
Parasiuk have defined a multiplication for “causal
functions.” It imitates the “subtraction procedures”
used in practical calculations of Feynman diagrams in
perturbation theory. The multiplication prescription is
rather complicated and limited to the special class of
“causal functions.”

In a further paper (Bremermann'®) a multiplication
is defined where the product of two distributions, in
general, contains arbitrary constants (like constants of
integration). It is based on Fourier transforms (and
on the results of this paper). (For multiplication based
on convolution compare also Ehrenpreis.?)

In the following we want to demonstrate that the
analytic continuations of distributions lend themselves
readily to define various multiplications in a rather
natural way. The products are well defined, they are
distributions not on the spaces (D) or (&) of (C*) func-
tions but operate on spaces of analytic test functions,

1. Let 8, T be two distributions with compact support.
Then §°(z) and T°(z) exist and are holomorphic outside
of the supports of S and T. One can define a multiplica-
tion as follows:

(5@7)-¢= ; S(2) T ()¢ ()dz,

where Co circles the union of the supporis of S and T,
and ¢(2)&(@). Since S%(z)T°(z) is holomorphic
outside the union of the supports of S and T, and since
¢(2) is holomorphic and Cy is bounded, the integral
exists for every ¢(2)E(@®;). (We assume that C, lies
in the strip {z|Im(z) <#}). The integral does not depend
upon the curve Co, and S@®T-¢ depends linearly and
continuously upon ¢(z), and hence is a distribution in
(@s’). The multiplication is associative and com-
mutative.

This can be extended to distributions with non-
compact support. If the product 8°(z)T%(s) vanishes
like A|z]™, «>0 and if ¢(z)E(Qs"), then SOT ¢
= JtS'(2)T(2)¢p(s)dz is defined (C, consists of one
line parallel to the real axis and one antiparallel). The
condition |S(z)T(z)| <4 |z|~=for || — oo is trivially
satisfied if one of the factors has compact support. If
S has compact support, then S(z) vanishes at least

T L. Schwartz, Compt. rend. 239, 847 (1954).

18 H. Kénig, Math. Ann. 128, 420 (1954).

WH. Koénig, Abhandl. bayer. Akad. Wiss. Math. Naturw. KI.
No. 82 (1957).

® Leon Ehrenpreis, Am. J. Math. 76, 883 (1954); part II, 77,
286 (1955); part IT1, 78, 685 (1956). :
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linearly at infinity while 7'(z) vanishes of unspecified
order, hence S(2)T'(z) vanishes at least linearly.

This multiplication is no contradiction to Schwartz’s
“theorem of impossibility.”” Neither 7(x)=1, nor
S(x)=x possesses a “Cauchy integral,” and secondly,
we have analytic test functions rather than (C*®) test
functions.

2. We observe that f°(z) equals f(z) for Im(z)>0
[if f(z) is holomorphic in the upper half-plane ], while
°(z)=— f(2) for Im(2) <O [if f(2) is holomorphic in the
lower half-plane’]. Thus one could argue that one should
multiply f(z) with a factor (—1) in the lower half-plane.
Also, in the section on Fourier transforms, we will
see that this new quantity, which we will call the
“analytic continuation” has a special meaning for
Fourier transforms.

Definition 6. Let T be o distribution such that T(z)

exisis. Let
To(z)  for Im(z)>0
—To(z) for Im(z)<0.

We call T'(2) the “analytic continuation of the distributio
T' » .
We have

T-¢= j; aT"(z}q’;(z}dzz L

for analytic test functions ¢(3). Thus we can define a
multiplication:

S@T:-¢=

TI(Z)_: {

T'(@)(z)dz

b

S1(5) T (z)e(z)dz.

Cp

If at least one of the factors has compact support and
if ¢(2) vanishes linearly for |2] — oo, then the existence
of the integral is assured, and obviously it depends
linearly and continuously upon ¢(2). Thus S@T-¢ is
a distribution in (@s"’). The multiplication is associa-
tive and commutative.

Lemma 2. Let S, T have compact support, then both
S@OT-1=0 and S@T-1=0.

Proof. We have S(2)T°(z)=8'(z)T(z), S°(z) and
T°(z) are holomorphic outside their compact support
and vanish at infinity. Therefore each one has a Laurent
development that has no constant term. Therefore the
product S°(z)T°(s) vanishes at least quadratically at
infinity. Hence

S(z) T°(2)dz=ResS (2)T'(z)=0.

A%

For the integral

f Si(z)TH{e)dz
Cp
we can, thanks to the quadratic behavior of S'(2) T (2)
at infinity, close the contour at infinity for the two
lines of which C, exists, and it follows that the integra}
is zero. ‘

The lemma shows that neither of the two multiplica-
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tions defined coincides with the ordinary multiplication
in the case where S(x) and T'(x) are, for instance,
continuous functions with compact support.

3. In the following we define a third multiplication
which does not suffer from this discrepancy. It reduces
to ordinary multiplication for continuous functions.
However, it is defined only for a rather limited class of
distributions.

Definition 7. Let S and T be such that S°(z) and T(z)
exist. Let & (B'). Then

40
S®T-¢= lim f_ [t -$(—ia)
XET(x+ie)— TO(x—7e) Jop (x)dx.

If S(x) and T(x) are continuous functions, then
S°(x+ie)—S°(x—ie) converges to S(x) uniformly in
every compact interval on the real axis, and in the
same way T°(x+ie)—T°(x—ie) converges to T(x).
Consequently, the foregoing limit exists and equals
S8 (%) T (x)¢ (x)dx. Thus for continuous functions
this multiplication reduces to the ordinary multiplica-
tion. If S(x) and T'(x) are arbitrary distributions, then
the limit may or may not exist.

Examples.

—+o0
1. f 8(x)8 (x) (x)dx

I

+00
lim — (27) f_ [0 (e i To(@ie

+0
lirg}r — () {(a+ie) 2 (x—ie)?

+ (@) [(a+ie) 7 — (x—ie) " P (x)dx

I

+
- (2n) f 2P(2)p )z~ lim (2re)?

—w

+0
X f [(x+ie)— (x—ie) Jp(x)d.

Since the second term contains the factor (€)', the
limit does not exist.

-}
2. f 5(x)P(x V) (x)dx

—00

1 ptr 1 1
= lim —— [ - ]

0 4dpi J_ Latie x—1e

1 1
X[ —+ .]qs(x)dx
x+ie x—1e
1 pt= 1
= lim —— [ ]¢(x)dx
o0 Api J_, Lixntie)? (x—ie)?

1 pt=

-— f & ()¢ (x)dz=1¢'(0).

~—00

Thus in this particular case the limit does exist.
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The examples show that for 5(x)6(x) the multiplica-
tion is not defined. One could attempt to make it
defined by taking a “finite part” of the integral, for
instance by declaring the finite part in example (1)
to be the first term [which is equal to — (1/27%) P(x72)].
However, we will not carry out this possibility in this
paper.

A more satisfactory solution of the multiplication
problem can be obtained by making use of the Fourier
transforms of the factors. This has been carried out in
Bremermann'® and has been applied to problems in
quantum field theory. In the remaining part of this
paper we will provide a basis for Bremermann!® by
studying Fourier transforms and convolutions.

Restriction of the Support of a Distribution
(Multiplication with a Step-Function)

The step-function @(x) is defined as follows:

1 for x>0

o
(= 0 for x<0.

For =0, ©(x) is undefined [sometimes ®(0)=4% is
used]. Note that ©(x) is the limit of the “finite step
function ©g,;(x)” (compare example 3, Sec. III),
however, the Cauchy integral of ©,,(x) does not
converge for & — ». O(x) has no Cauchy integral
[though in an improper sense we can associate — (2xz) ™
Xlog(—3) as “improper Cauchy integral” with O (x)].

If T(x) is a continuous function, then we may
multiply T'(x) with ©(x) and the product is well
defined. If T'(x) is only a generalized function, then we
encounter difficulties. For example, what is the meaning
of 8(x)O(x)? Formally one could write /" +23(x)O(x)
X ¢ (x)dx= ©(0)¢(0), however, @(0) is undefined.

For any distribution T the following is true: If ¢
is a test function with support in £>0, then

00 +o
[ r@ewewan- f () (x)dz,

while if ¢2(x) has support in <0, then

o0
T (x)¢2(x)dx=0.

-—00

These properties hold because @ (x)¢1(x) and O (x)¢p2(x)
are (C*) test functions.

To define T(x)O(x) we approximate ®(x) by (C*)
test functions y;(x) with support in x>0. Since the
convergence is not uniform, the limit 7y ;o need not
exist. If, however, this limit does exist for all ¢, then
we denote it by

o0
f T(x)® ()¢ (x)dx.

—c0



252 H. J.

Correspondingly we define the limit
o0
f T (x)O(—x)¢p(x)dz.

The values of S T (x)[O(—x)+0(x)]¢(x)dx
and S T(x)¢(x)dx need not agree in general,
however, the two values agree for every test function
whose support does not contain the origin. Hence

T(@)[1—6(—2)—08(x)]

is a distribution whose support consists at most of the
origin. Consequently it is a finite linear combination of
3(x) and its derivatives. Let us denote this distribution
by Q. Then

T(x)=T(®)O(—x)+T(2)O(x)+0(x).

Examples.
L T(x)=5(x+1)+8(x)+8(x—1),
then
T(x)®(—x)=06(z+1)
T(x)O(x)=8(x—1)
O(x)=5(x).
2. T(x)=6(x).

In this case the limit T'(x)©(x) does not exist.

Definition 8. If T is a distribution such that T ()0 (x)
and T(x)O(—x) exist, then we call T “a distribution
with a polelike singularity at the origin.”

VIII. CONVOLUTIONS

The convolution product of two functions, f(x)
and g(x), denoted by k= fg, is a new function defined
by the formula

o0 o0
wo= [ re-gar= f ¢(e—0 ().

-—00

While this product does not converge for arbitrary f
and g, convergence is assured if the functions are
bounded, and if one of the functions has compact
support. On the other hand, if f and g are distributions,
this definition is not suitable; we require, rather, the
definition of %-¢ for test functions ¢& (D) [or some
other appropriate space]. By formally interchanging
the order of the integrations in %-¢, one obtains

o= [ :wh(x>¢(x>dx= f_ﬂ{ [ :f(x—-t)g(t)di }qscx)dx

- f_ﬁ f :f(x)g(t)¢(x+t)dxdt.
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This form is used by Schwartz to define a convolution
for distributions. Convergence of /%-¢ is not in general
assured unless the support of f(x)g(f)¢(x--¢) is compact
in the (x,f) plane. We note that the support of ¢(x+1)
is not compact in the plane even for ¢(x)E (D), so
that the classes of distributions for which a convolution
product is defined are somewhat restricted. We will
not, however, discuss the finer convergence properties
here but will proceed immediately to consider the
Cauchy integral of a convolution product.
The Cauchy integral of 7S is defined as

(T+°S) (Z)E—I-:(T*S) (=2
2ni

1 +o mtw 1
- f f T(2)S (1) ———dadt.
27 oy ¥ s x4t~z

If we formally integrate first over x, and if T° exists, we
obtain

o0
(T#S)(z)= f To(z— S ()dt.

This has the appearance of the convolution product as
defined for functions, except that z is now complex
and the distribution T'(x—?) has been replaced by
To(z—£). We will take the above equation as a definition.

Definition 9. Let S, TS (@), 0<b<L 0. Then we

define the convolution of T, S by

40
(T#°S) ()= f To(z—1)S(¥)dt,

provided that the integral comverges. We note that S,
TE(@s7") guarantees the existence of To(z), $°(z).

Lemma 3. Iffor 3| — =, |S°(2)T%(—32)| <4 3|72,
a>0, where A is a constant, then (T¥°S)(2) exists.

According to theorem 5a we can replace /" +°T*(z—?)
XS()dt by an integral over a curve C, as long as
as T°(z—1), ¢ complex, remains holomorphic in the
strip with boundary C,; that is, the replacement is
valid for z outside C,:

f +Go’l“’(z— DS (di= f To(z—1")S(¢')dt’,
B - | Imz| > | Im?'|.
To(s—#') behaves for large ' as To(—#), hence
| To(z—1)S ()| <A |t| =

for [#/| — oo, and the integral converges.
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Theorem 6. If (T*°S)(z) exists, then

+e 1
T(e—)S@)di= | To(z—1)S()dr =—
f_w (z—)S(Hat j; ; (z—1")SO(t")dt -

e

1 +0 o0
o) | T@so——@a= [ se-oymwi=

—0 Y—o

where Cq is such that z/2 lies outside the strip bounded
by Ce.

Corollary. (T#°S)(z)= (S*°T) (2).

Proof. If the first integral exists, then it can be
replaced by the second according to theorem 5a, where
C. has to be chosen such that T°(z—) is holomorphic
in the strip bounded by C,. This is the case if and only
if z lies outside the strip, and is therefore true if z/2
lies outside. '

We then substitute for T®(z—/’) the integral

1 oo 1
— | TE)———dx,
2nt J_ x—(z—1)

which again can be replaced by

1 1
— 1 T(¢')———dx,
2w Ve, x'—(z—t")

where x’ is complex and z—? outside C,. The last
condition is satisfied if z/2 lies outside C,.

Since we now integrate only over well-behaved
holomorphic functions, we can write the iterated
integral as a double integral over C,XC, (integral IIT).
By contracting C, to the real axis and by an argument
analogous to that of theorem 4, we obtain the double
integral IV. But by writing the integral over C,XC,
again as two successive integrals, but now in different
order, and reversing the previous steps, we obtain
integral V, which leads immediately to integral VI.

Lemma 4. If either T or S is a distribution with
compact support, then (T*°S)(z) exists.

We can assume that .S has compact support, which
trivially implies the existence of

o0
f Te(z—8)S(@¢)dt.

Theorem 7. The convolution product (T*°S)(z) is
a holomorphic function for all z with Im 250, For
(8| — <« the function (S*¥°T)(z) lends to zero. It defines
a distribution T+S for all ¢&(Qp), 0<b< o which
vanish for |z] —  as A]z|~%, «>0, A constant:

T+S¢p= ] ( Z‘*"S) (2)¢ (2)dz.

Ca

Proof. To show that (T*9S)(z) is holomorphic, we

1
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1
f To(x")S0 (¢ )y ———dx’dt!
CaXCa 2 +t'—z

4o
f §9(s— ) T(x)dx,

—

make use of theorem 7 to write (T#°S)(2) as the
double integral:

(T%S) (5) = f i f " IS0 (dadi).

V. x+t—32

T (x)S(2), the direct product of T and S, is a distribution
on R? the Euclidean space of two real variables,
while [x+¢—2]* is a (C*) function on R2 The further
argument that the foregoing integral is a holomorphic
function of z for Imz5£0 is exactly analogous to the
proof of theorem 1.

For |z| — « the function 1/(x+¢—2) tends to
zero unformly in every compact subset of R?, together
with all its derivatives. Hence, by continuity, (7%°S)(2)
tends to zero. This implies that JCo(S*T)(2)¢(5)dz
converges for ¢(z) that behave as 4|z, a>0, at
infinity. Hence T+S-¢=S*T-¢ is defined for every ¢
in question. Linearity and continuity are obvious, and
the theorem is proved.

Reproducing property of convolutions with 5(x):

+o o0
To(z)= f T(z—x)8(x)dx= f T (x)8%(z— x)dx
B B for Imz5=0.

The first equality is obvious, since for Imz0, T°(z—x)
is a holomorphic function of x for all x. The second
equality follows from theorem 7, but may be verified
directly: 8°(s—x)=(1/2m3)(1/2—~32); thus, St*T(x)
X8 (z—x)dx= (1/2mi)T-[x—2]1="T°(z), and we see
that the Cauchy integral T%(z) is the same as the convolu-
tion product of T and §,

To(z) = (T%%) (3).

The convolution product can obviously be generalized
to three or more distributions, for if T#S=S*T exists,
and if U has compact support, we may define

[(S*T)+u]= f w(S*"T) (z— U (t)dt

f ) f St (e v O T (@)U () dt,

The product is associative and commutative.
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IX. FOURIER TRANSFORMS

The Fourier transform of a function is defined as

1] " fedooa,

and for a distribution:
T-eir=,

Remark. Sometimes a factor 2z is included in the
exponent of e: €772, We will use the transform defined
without this factor,

Theorem 8. If T is a distribution with compact
support, then T -e*** exists and is a holomorphic function
of p in the whole complex p plane. We will write

T-¢72=5(T,p).

The function e*#* is for every p a test function in (&),
hence T'-ei7® exists for T€(&'). That T-e?= is a
holomorphic function of p for all p follows as in theorem
1 by showing that it is complex differentiable with
respect to p. (Schwartz' has proved the following
stronger result: Necessary and sufficient for 7T to have
compact support is that F(T,p) is an entire function of
exponential type <C, where C is some constant; see
footnote 1, Vol. 2, theorem XVI).

Lemma 5. Let T (8'). Then

%’(T,p):——T-e"””=f To(z)eiredz.
o

This is an immediate consequence of theorem 5. We
have nevertheless stated it as a different lemma because
it permits us to compute some Fourier transforms as
residues.

Examples.

oo
1. f S{x)er*dx=e"=1,

-0
This can also be computed as a residue:

1
—e*Pdz
coZ

1
f B(@)errdn— ——

2w

(@PZ)2

2
_— f ( 2, o
Cco 2 2!

2. For the derivatives of the § function we have

4 ar
[ s @er= (- 1—eirelo= (-G
o dxn

This, again, can be computed as a residue.

3. If TE (&) has point support at x=0, then F(T,p)
is @ polynomial in p.

If T has point support at =0, then T'(x) is a finite
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linear combination of 3(x) and its derivatives. The
result follows then from example 2.

Theorem 9. Let T&(8'). Then

TW.givs= (—ip)*T-eirz= (—ip)"F(T,p),

where T is the nth derivative of T
We have by definition: 7™ .¢irr= (—1)*T" (d"/dx)
Xeire=(—ip)"T-e'r=,

Noncompact Support

If the support of T is not compact, then the situation
is quite different. For ordinary functions, Plancherel’s
theorem states that, if f(x) is square integrable from
—® to 4o, then F(f)=g(p)= Sutf(x)e'P*dx exists
and is square integrable. In particular the inverse
Fourier transform &ov(g)= f*(x)= S °g(p)e "**dp
exists, and f(x)=(1/2x)*(x). {If one wntes the factor
21 in the exponent, then F=[ F(f)]=f, without the
factor (2r)~.} However, as was seen before, the
Fourier transform of the #th derivative of the & function
is (—ip)", ©2>0; for this function the inverse Fourier
integral obviously does not converge in the ordinary
sense.

One possibility to deal with functions that behave like
a polynomial for |x| — « has been elaborated by
Bochner.* In taking the Fourier transform of f(x),
the function is divided by 14 |x|*, where & is larger
than the order in which f(x) tends to infinity. This
division introduces an “error” which is an additive
polynomial in p, so that S . t*f(x)e?*dx is finally
defined modulo polynomials.

Schwartz’s Fourier transforms of “tempered distribu-
tions” (which include functions behaving like poly-
nomials at infinity) are defined by means of Parseval’s
formula. In contrast we define the transform by
splitting the integration from —« to - into two
parts, from —« to 0 and from 0 to + o, which gives
us a pair of holomorphic functions in the upper and
lower half-planes. This definition is equivalent with
the usual one in the sense that we obtain the “analytic
continuation” (as defined previously) of the ordinary
Fourier transform (Compare also Carleman®). (We
prove this for square integrable functions. The question
of equivalence with Schwartz’s notion for distributions
will be discussed in a further paper.)

Space of Rapidly Decreasing (C*) Functions

Let (8) be the space of all (C*) functions that vanish
faster than any power of x for |x|— o (*‘rapidly
decreasing functions”). Convergence in (8) is defined as
follows: A sequence of functions ¢;&(8) is said to
converge to 0in (8) if, and only if ,the following is true:
Let P be an arbitrary polynomial, and let Q be an

) u S) Bochner, Vorlesungen iiber Fouriersche Integrale (Leipzig,
932).
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arbitrary “polynomial of derivation,” that is
N
Q= X ad®.
=0

Then P(Q*¢;) converges to zero uniformly on the
whole real axis.

Tempered Distributions

The elements in the dual space (8’) are called
“tempered distributions.” Schwartz' has shown: T is a
tempered distribution exactly if 7€ (&’), and T'(x)
behaves like a finite power |#|* for |z[ — .

Theorem 9. Let TE&(8'). Let the support of T be
contained in some “half axis” e<x<+ o, g¥— oo,
Then T-e?= exists and is a holomorphic function of p
for Im $>0.

Proof. Let a(x) be a (C*) function equal to 1 for
a <z, and a(x)=0 for x<a—¢, ¢>0. Let p=2p'+ip".
Then, for p">0, eiPr=¢i?’*¢~?"'= vanishes exponentially
for x— o, consequently a(x)ei?*&(8) for Ipm>0.
Consequently T'a(x)e’?*=T-e?* exists. That this
function is holomorphic for Imp>0 follows as in the
proof of theorem 1 by differentiating with respect to p.
Analogously one obtains:

If TE(S") and has support in — o <x<b, b#0,
then the Fourier transform is holomorphic for Imp<O0.

For the general case of noncompact support, there is
usually no domain in the complex p plane for which
the whole integral converges. We therefore split the
integral into two parts. This may seem to be a somewhat
arbitrary procedure. The deeper justification for it,
as we will see, lies in the fact that the Fourier transform
of the kernel of the Cauchy integral involves a step
function.

Definition 10. Let TE(8'), and let T have at the
origin at most o pole like singularity. Then we define:

+oo
T(;))=f T (x)O(x)e??dx+3Q.- €7  for Imp>0,

+o0
T(p)=f T(x)O(—x)eredx+3Q,-€?* for Imp<0,

where Q 1is the distribution with support at the origin
defined in Sec. VII.

For ST (x)O(x)e’"dx, we will also write
JooT (x)et?*dx, and correspondingly for J . t°T'(x)
X O(—x)eir?dx, we write S OT (x)e'?dx. ~

From the preceding theorem follows that 7°(p) is
holomorphic in the complex p plane except on the real
axis. (Q.-€*** is a polynomial in p.)

We will call T(p) the Fourier transform of T, and
we will also write: T'(p)= §(T,p). Thus the Fourier
transform of a distribution is again given by a pair of
holomorphic functions, which may or may not corre-
spond to a distribution.
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Theorem 10. (Connection between our definition and
the ordinary definition of Fourier transforms): Let T(x)
be a square integrable function. Let the Fourier transform
of T in the ordinary sense be denoted by F(T,p). Then the
analytic continuation of F(T,p) (as defined in section
VII) equals T(p):

F(T,p)=T(p) for all p with Imp=0.

For the proof we need the Fourier transform of the
kernel of the Cauchy integral, and we therefore first
prove the following lemma :

Lemma 6. (Fourier transform of the kernel of the
Cauchy integral.) The following formulas hold :

1 o 1

for Imp'>0: — e dp=ei?'*@ (x)
mid o p—7p
1 te 1

for Imp'<0:  — ePidp=—¢'?" 2@ (—x).
2mid_ o p—9p'

Proof. Let Imp’>0, then e?’?@(x) is a square
integrable function, hence, by Plancherel’s theorem,
its Fourier transform exists and is square integrable,
and we have

1
—FFv] ¢i7’2@ (x) ]=€'7'=0O ().
2w
Now
ginv[gip’:c@ (x):] — f

—o0

-0
e 4P Q (x)dx

e~ ip—p)R__{ 1
= lim =

e —i(p—1)

Hence Ho=2)

1
S’[—‘————, x] =7 2@ (x).
2mi(p—p')

Analogously one proves the second formula.

Proof of the theorem. F(T,p) exists and is a square
integrable function by Plancherel’s theorem. Being
square integrable, F has an analytic continuation F'.
We have by definition

1 o1
F(T,p")=— f ——F (T p)dp
— p—P

i

1 pte 1 +o

=— ———{f T(x)e“”dx}dp.
rid e p—p Vs

Since all the functions involved are square integrable,
and since JSZgET(x)e'?*dx converges for R— » to
F(T,p) in L1? norm and the same is true for S gE[1/
(p— ") Je**dp, we can exchange the order of integration
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and write Examples.
1. T(x)=1
Fy(T,p’
(7,9 c el
| e oo fe"”dx: }g}o i =—;;, Imp>0
=— T(x){ f eiP%dp }dx 0 .
2wl Vo = =P o 1—ei?R 1
fe“’”dx= lim =—  TImp<O.
= R—x ,’:P 1’?

-'-w - J
= f T (%)O (x)ei? *da= f T(x)et?' =dx

—0 0

for Imp’'>0,

e 0
= _f T(x)@(—x)e“’"dx= —_ f T(x)cip’:dx

for Imp’ <O.
Hence

FY(T,p")=sgn(Imp")F(T,p") = T(#"),

which proves our theorem.

eipx

] et’px
f xreP*dxr= lim (x" - navl——F- ..
0 Fom X dp (ip)*
and analogously
0 n!
f xreP*dx=————— for Imp<O0.
- (—ip
Thus
_ — 1)ty
I'(p)=sgn(Imp)———.
@p)mt
On the other hand, we have
— 1) ntlgyl
3 (p)=sgn(Imp)———.
2pipntt

Thus ~
T (p)=[2x/ (&) 16" (p).

We can combine the factor (3)* together with x to
obtain

1 ot
— f (ix)me9eda=510 (p).
2 J_, -

Theorem 11. Let T be as in definition 10. Then
d - 0
Pl f (i) T (2)erdz+-30,- (ix)eir=  for Imp>0
0

and

d_ 0

Pl f (i) T (2)e7*dx+-3Q,- (ix)eiv= for Imp<0.

—o0

This is shown as in theorem 1.

m—leipz
+nl(—1) )

Since T'(x) is continuous at the origin, the distribution
Q vanishes. Thus we obtain

T(p)=F1/ip for Imp20.

The right-hand side is equal to 27$'(p), the analytic
continuation of 2x8(p). This result is consistent with
the usual theory, in which one has

1 pt=
— e ?*dx=5(p).
2rd o

2. T(x)=x", n integer, n>0.
Since T'(x) is continuous, Q vanishes. We obtain at
once
R n!

=—~;~—, for Imp>0,
0 ’(_ip)n+1

(’L p) u+_l

Inverse Fourier Transform

Let f(x) be a square integrable function; then
according to Plancherel’s theorem

-0
F(f,p)= f f(x)ereda

exists, and F(f,p) is square integrable. Therefore

00
srinv[sr<f,p),xj=f F(f,p)e-rda

exists, and we have
(1/2m) 5= L5 (f,0),0 1= f(x).

As we have seen, the Fourier transform of 5 (x) is
(—1p)™. While this is not a square integrable function,
and the inverse Fourier transform does not exist in the
ordinary sense, our extended definition of a Fourier
transform gives the correct inverse in the sense of
giving the correct analytic continuation of §™ in the
complex x plane:

F(O™,p) =8 . girz= (—ip)",
1 )
— [ (ipreitn— Pol(=ipr, =9 ).
T Voo

We will investigate this situation in more generaltiy.
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Theorem 12. Let T be a distribution with compact
support. Let F(T,p)=T(p) be bounded by a polynomial
Jor p—> F oo, preal. Then the inverse Fourier transform

Tinv(z)= f T(p)e—ipzdp for Imz<0,
0

0
=f T(p)eirddp for Ims>0,
exisis, and -

iT‘inv<z>=T*<z>,

where T (z) is the analylic continuation of T.

Proof Since T has compact support, 7(p) exists
and is holomorphic for all p, |p| <, and has in
particular no singularities at the origin. Consequently,
no distribution corresponding to Q has to be included
in the definition of 7'nv(3). The existence of 7%nv(p)
follows immediately from the assumption about the
behavior of T'(p).

For Imz<0, we have

Tinv(5) = j; m{ f_:T(x)eipzdx]e—ipzdP

= [ [ r@enar|eap,
0 Co

where the closed contour Cy around the support of T
is chosen such that |Im¢|<|Imz| for all £ on Co.
Then Im(£—2)>0 for all £ on Co. We have

f"inv ( Z)

R
lim f { To(g)ews]e-mdp
R—»0 0 co

lim f TO(g){ f eww—ﬂdp}dg.

eiBlE—2) 1
f etp(E—z)dp—.___
0 1(§—32)

converges uniformly to —[1/i(¢§—2)] for ¢<C,. Hence
we can interchange limit and intergration and we obtain

Now

oo 1
T(x)—dx
X—3

Tiv(z)=i T"(E)—dE i

co E— —
=—2rT?(z) for Imz<0.
In an analogous manner one obtains
Tinv(3)=22T(3) for Ims>0.

Hence Ti2v(5)=2xT!(z). This proves our theorem.
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Fourier Transforms of @(x), 5, (x), (x),
and P(x").
-+
1. f O(x)eir*dx=— (1/ip) for Imp>0,
- =0 for Imp<0.
The right-hand side equals 78,%(p) (compare Sec. V).

Hence

F[ O (x),p ]=mb..(p).

2. s[a+(x),p]_—— lim f

ePdz.

x+1e
According to lemma 6,
1 pt= 1

——e'Pidx=2e70 (— p).

ir J_ x+1t€

The integral converges uniformly in any compact
interval of the real p axis to 20(—p). Hence

5[5.4.(90),?]:2@(—?),
FovLoy (x),p1=20(p).
3. According to examples 3 and 4 of Sec. V, we have

P(a)=in[8(x)—81(x)].

and

Hence
SLP(x™),p]=ix[1-20(~p) J=1ime(p),
where
1 for p>0
e(p)=
—1 for p<0.

4. Analogously one computes:

FLe(p),x]=2iP(x7Y).
(—1)1 gnt

> Pem)= (n—1)! dx~?

P(x1).

Hence

SR T ( - P9

(n—1)! \dxr?
o
Hence
SLP () plm T DD

(n—1)!
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Fourier Transforms and Convolutions
Let f, g be square integrable functions; then
(1/2x) 5L F(f)- F(g) 1= fg,

where f*g is the convolution of f and g. As this is one
of the most important formulas in the theory of
Fourier transformations, we would like to extend it to
distributions.

Theorem 13. Let S& (&) and TE&(E'), and let
F(S,p) and F(T,p) be bounded by polynomials for
p— oo, Then:

(a) .
(S*IT) = E—EF““’[&(S’?) : g(T)p):l

1 ]
=—f F(S,p)F(T,p)e*%dp for Imz<0,
2r Jy

1 0
=2— f F(S,p)F(T,p)e-??dp for Imz>0.
T Vs
Proof. T has compact support. Therefore, (S¥'T) exists,
« ate ]
(SHT) (2)= f St(z—x) T (x)dx= f Si(z—x)T (x)dx

for some ¢, b finite (because T has compact support).
From theorem 12,

Si(z—x)= 27)'F [ F(S,p), 2—x]

1 o0
—f F(S,p)e?adp, Im(z—x)<0
2w Jy

1 o
Z—-f F(S,p)e=?adp,  Im(z—x)>0.
TV

We take x real, Imz<0. But [fiBF(S,p)e?—2dp

BREMERMANN AND L.
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converges uniformly in x for R— «, x in any compact
interval of the x axis, 3 fixed with Ims<0. Therefore,
when substituting this expression for S!, we may
interchange the order of integration and obtain

(S4T) (5) = f bS‘(z—x)T(x)dx

©

_ i b{ f F(S,p)e-ir—adp } T (x)dx

27|'a 0

—_—% j;mir'(S,p)e“i“{ fme“"T(x)dx}dp

a0

1 0
=— f F(S,p)5(T,ple~r?dp, Imz<O0.
27 Vo

A similar argument for Imz>0 completes the proof.
(b) We establish by analogous methods under ihe
same conditions

S"(S*T; ?) = g(srp) 5(T;P)-

Theorem 13 can be generalized to cases with less
stringent conditions on the distributions .S and T
Example.

N

T(x)= X a¥(),

»=0

S&(8),
then
N
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An application of Dirichlet’s principle, using a simple trial function suggested by the symmetries of the
problem, is shown to furnish fairly close, readily computable, upper bounds for the capacity of any regular

solid.

1. INTRODUCTION

HE main purpose of the present note is to show
how an application of Dirichlet’s principle (see,
e.g., Pélya and Szegd,! p. 43) using a simple trial
function [see Eq. (5)] furnishes fairly close, readily
computable, upper bounds for the capacity of a regular
solid. While this function seems to be naturally dictated
by the symmetry of the domain in question, and may
be used a priori independently of the variational
considerations of Sec. 2, the Euler-Lagrange argument
given there suggests that (in a certain sense) it is the
“best’ trial function of such a simple nature. A similar
trial function has been used in the estimation of the
torsional rigidity by Diaz and Weinstein.? In Sec. 3,
an attractive attempt at improving the bounds for
the capacity is analyzed. This attempt was developed in
seeking to improve the numerical bounds obtained in
Sec. 2. It is shown that a certain minimization process
[which leads to the inequalities (13)] actually furnishes
worse upper and lower bounds than the simple algebraic
process leading to the inequality (16). This byproduct
of the computation of numerical bounds for the capacity
in Sec. 2 is believed to be of interest in itself, since the
remark made in Sec. 3 applies equally well to many
quadratic functionals in mathematical physics, and not
only to the particular one under consideration here.

2. UPPER BOUNDS FOR THE CAPACITY

For any two sufficiently well-behaved functions
f(x,3,2) and g(x,v,3), define the inner product (f,g) by

o= [ [ [ eradf-gradgav, ()
D

where D is the region exterior to a given closed bounded
smooth surface .S. An upper bound for the capacity C
of S is given by

 (1/4m) (wyw) 2 C, 2)

where w(x,y,2) is a sufficiently smooth function such
that w(x,y,2)=11f (x,9,2) is a point of S, and w=0("1)
as r= (x*+y*+-2%)} approaches infinity.

* Also at the Institute for Fluid Dynamics and Applied Math-
ematics, University of Maryland.

1 G. Pélya and G. Szegd, “Isoperimetric inequalities in math-
ematical physics,” Annals of Mathematics Studies, No. 27 (Prince-
ton University Press, Princeton, New Jersey, 1951).

2 J. B. Diaz and A. Weinstein, Am, J. Math. 70, 107 (1948).

Let P be a regular polyhedron of » faces, each face
being a regular polygon of r edges. Suppose that P
is circumscribed about the unit sphere with center at
the origin. Let P have one face F contained in the plane
x=1, with the x axis passing through the center of F;
and let one edge, call it E, of F be parallel to the y axis.
This serves to fix the position of P in space. Now
consider the triangle T, with E as one edge and the
point (1,0,0) as opposite vertex. If F is a regular
polygon of r edges, then F will consist of » triangles
congruent to 7. Let the vertices of T be (1,0,0),
(1,a,b), and (1, —a, b), and let a=a/b. Then

(w,w)= fff[gradwlde
=nr f wdx f bzdz f az]gradedy, (3)

-0z

where we assume w to be symmetric with respect to
the polyhedron P, and also to be symmetric with
respect to each of the r triangles in the face F.

If we let w(x,y,2)=f(x) in that portion D' of D
covered by the integration on the extreme right of (3),
then

(w,w)=2nr f mdx f bzdz f "“[ () Pdy
= nrab? f wle_'_f' (x) Pdx. (4)

To minimize this expression for (w,w) (with respect to
all suitable functions f) note that by the Euler-Lagrange
equation

] - d 9 o7
g{xz[f ()] }—E; gj;{x L/" (=) P} =0,
we obtain
2xf'(x)+a*f" (x)=0;
and since f(1)=1 and f(x)=0(x"1) for large x, we have

f@)=1/x, ©)

so that (5) gives the best possible choice of f.
An improved value for (w,w) can be obtained by
letting

w(xy,2)=(1/2)+ |yl +uz)1/5=1/2%)  (6)

259
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in D’ and minimizing (w,w) with respect to A and p.
Note that the choice of w given by (6) still satisfies the
boundary conditions on F and at o. In accordance
with the well-known Rayleigh-Ritz method, the first
term on the right-hand side of (6) is just the function
arrived at in (5), while the second term is just a simple
“coordinate function” (in the terminology of Walther
Ritz) which satisfies the homogeneous boundary
condition (i.e., it has value zero on the boundary).
From (6) we have

bz az

(w,w)=2nr ]; mdx j; dz j; | gradw|2dy
e )]
+u[—iz-(———+— ]+>\’[(———+—)3'2
)]
sl 242

ab a?b? 1
—2nrab2l—--)\———u—+ 2(-——-}- )
6 3 12 6
b ab?

+pl + +NI-T ] (7)

For (w,w) to be a relative minimum (as a function of
A and p), it is necessary that

3 (w,w) o2 1 ab?
= Zm'abz{ —~——+27\ ——-l——) +u— } =
12 4
(8
3 (w,w) : 21 ab?
= 2m‘ozb2{ ——+2u ———+ ) JHA— } =
du 4

which is a system of linear equations to be solved for
A and u.
On applying the foregoing to the icosahedron, we have

n=20, r=3, b=+/3{3(V/5+1)}2 a=1/4/3

(see Coxeter®), and this gives C< (1/4x) (w,w)<1.096.
Use of the volume radius (see Pdlya-Szegd,! p. 63)
gives the lower bound 1.064<C.

For the case of the cube we have n=6, r=4, b=1,
a=1, and so C<1.6103. Use of the volume radius gives
the lower bound 1.240<C.

3 H. S. M. Coxeter, Regular Polytopes (Methuen and Company,
Ltd., London, 1948).

DIAZ,

AND W. E. PARR

Parr,* by using an extension of the results of Pélya-
Szego obtained the upper bound C<1.084 for the
icosahedron, and C<1.3359 for the cube; Payne and
Weinberger® obtained, by still another method, the
upper bound C<1.336 for the cube.

3. A MIRAGE

In this section we discuss an attempt to derive new
bounds for the capacity of a surface S. We introduce the
functions #, v, w (functions of x, v, and 2) where

=1, onS, Au=0in D,
#=0(1/r) as r approaches o ;
Av=01in D, v=0(1/r) as r approaches « ;

» not identically zero;
w=1on.S, w=0(1/r) as r approaches «.

Here A denotes the Laplacian operator (92/9a2)
+(8%/39")+ (6*/92%).

The function wsatisfies the same boundary conditions
as #, while the function v satisfies the same partial
differential equation as ». It is well known (see, e.g.,
Diaz®) that an upper bound for the capacity C may
be obtained in terms of w alone, as follows:

C<(1/4m) (wyw); )

while a lower bound for C may be obtained in terms of
v alone, as follows:

1 (o,u)?
— < (10)
4r (v0)
where, by Green’s identity
(11)

o= [ S f %ds

and # is the inner unit normal to S.

The following process, which employs the functions
w and v together, rather than singly, would appear,
at first glance, to furnish better upper and lower
bounds [see Eq. (13)] for the capacity C than are
given by w and v, individually, in Eqgs. (9) and (10),
respectively.

By Schwarz’s inequality, we have

(w, ,u_v)ZS (w,w) (u—v: M—'U)

*W. E. Parr, “Upper and lower bounds for the capacitance of
thgoregu]ar solids,” Ph.D. thesis, University of Maryland, June,
19

5L. E. Payne and H. F. Weinberger, J. Math. and Phys. 33,
291 (1955).

¢J. B. Diaz, in Boundary Value Problems in Differential Equa-
tions, Proceedmgs of a Symposium conducted by the Mathematics
Research Center of the U. S. Army at the University of Wisconsin,
Madison, Wisconsin, April 20-22 (1959), pp. 47-83.



ON THE CAPACITY OF THE ICOSAHEDRON

or

(w)u)2 -2 ('w,u) (w7v) + (w77))2
< (wyw)[ () —2(u,0)+ (v,0) .

(w,u)= f f f gradw- gradudV,
D
and by Green’s identity this is just

~ [ f fosuars [ fuZas= [ [ Zos=
D 8 8

Thus

(12)
But

(w,u)= (u:u)'

On using the fact that Av=0in D and u—w=0on S,
the preceding type of reasoning shows that
(v, u—w)=0,
and hence
(v)u) = ('I),ZU).
Thus, replacing (w,u) by () and (v,u) by (v,w) in
(12), and transposing, we obtain
(uyu)z - (u:u) [ (w)w) +2 (wlv) ]
< = (@)= 2(w,w) (vw)+ (ww) (v,9) ;
or, completing the square on the left-hand side,
{ (ua“) - [% ('w,w)+ (‘10,1))]}2
< @w){(v,r)— (rw)+1(ww)}.
Since Av satisfies the same conditions as », where X is
any real number, we may replace » by Av throughout,

If we replace » by A» and minimize the right-hand
side with respect to A (in order to minimize the “error”),
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we obtain

O

(vw)?

v,v)

SM{ (w,w)—
4

]. (13)

Equation (13) furnishes the presumably better
bounds for C obtainable by employing the functions
w and v together. However, from (9) and (10), in a
readily understandable notation (using C_ to denote a
lower bound for C, for example),

(vw)?  (v,u)?
@) (o9
Then (13) can be rewritten

{C—ilCc+CIp<icCc-—C],

< (uw) =47 C < (w,w)=4xC~.

(14)

0<C_LCLC. (15)

However, upon subtracting 3 (C_+C-), the inequality
(15) yields

3C_—3C-<C—3(CHC)SIC—1C;
that is,
—H(C—CILC—H(CACISHC—C)

where

" {C—3(CAHC)P<I(C—C (16)

Since C—>C-—C_, the inequality (16) is actually
sharper than (14). Thus, the process of minimizing with
respect to A, which led to (13), actually furnishes worse
bounds, (13), than the bounds (16), which were
obtained purely algebraically, without any minimization
whatever!
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The potential which minimizes the lowest eigenvalue of the one-dimensional Schrédinger equation is
determined among all potentials V for which the integral of V» has the prescribed value . For each value
of n and k this potential is found to be a special case of the Epstein-Eckart potentials which were originally
introduced because the Schrodinger equation for them could be solved explicitly. The minimum eigenvalue
is determined and it provides a lower bound on the lowest eigenvalue of any potential for which /" Vdzx=£k.
The expression of this fact as an inequality yields an isoperimetric inequality. For an arbitrary potential,
each value of n provides one lower bound on the lowest eigenvalue, the largest of which is the best. This
best bound is determined for the square well, the exponential, and the inverse power potentials. In the
case of the square well, it is compared with the exact value. In the limiting case n=1 our result reduces
to that previously obtained by Larry Spruch, who showed that the delta function has the minimum lowest

eigenvalue among all potentials of given “area.”

1. INTRODUCTION

PPER bounds on the lowest eigenvalue of the
Schrodinger equation can be obtained easily
because this eigenvalue is the minimum of a certain
variational expression. However, it is not so easy to
obtain lower bounds, although various methods have
been devised for obtaining them. Therefore, we have
re-examined the problem of obtaining lower bounds
from a different viewpoint, i.e., that of isoperimetric
inequalities. We seek that potential which in a specified
class of potentials, yields the minimum lowest eigen-
value. Once we find it, its lowest eigenvalue is a lower
bound on the lowest eigenvalue of all the potentials
in the specified class. The resulting inequality is
called an isoperimetric inequality by analogy with the
classical inequality 4 <1?/4rx relating the length of a
curve to the area 4 it encloses. This classical isoperim-
etric inequality is a consequence of the fact that of all
closed curves of length L, the circle encloses the greatest
area L2/4r.

Our analysis is confined to the one-dimensional case.
We consider a two-parameter family of classes of
potentials and, therefore, we obtain a one-parameter
family of isoperimetric inequalities. Thus, we obtain a
one parameter family of lower bounds on the lowest
eigenvalue of a given potential. These bounds are
explicit formulas, each merely involving an integral of
some power of the potential. Naturally, the largest of
the lower bounds is the best, but which is largest
depends upon the potential. To illustrate the accuracy
of the bounds, we determine the best one for a square
well and compare it with the exact eigenvalue. We
also obtain the best lower bound for exponential and
inverse power potentials. In principle, our method
applies to higher-dimensional cases, but it then leads to
nonlinear differential equations which cannot be solved

* The research in this document has been sponsored by the
Office of Naval Research, Air Force Cambridge Research Lab-
oratories, Office of Ordnance Research.

explicitly, whereas they can be solved explicitly in the
one-dimensional case. These equations are given and
some consequences of them are presented.

One interesting aspect of our results is that the
potentials which yield the minimum lowest eigenvalues,
in the classes we have considered, are special cases of
the potentials introduced by Epstein. Their potentials
were introduced because they led to Schrodinger equa-
tions which could be solved explicitly in terms of known
functions.

The present investigation was undertaken to general-
ize the result, proved by Larry Spruch (unpublished),
that the delta function has the smallest lowest eigen-
value of all potentials of given ‘“area,” i.e., of given
integral of the magnitude of the potential. His result
appears as a limiting case of our results. Qur method of
analysis is one which was devised previously to deter-
mine the shape of the strongest column of given length-
and volume.?? In the course of the analysis, we also
make use of a suggestion of H. F. Weinberger. In the
final section we show by the same method that the
usual upper bound for the lowest eigenvalue also
results from an isoperimetric inequality.

2. ISOPERIMETRIC PROBLEM

The one-dimensional Schridinger equation for the
wave function u(x) of a particle of energy A in a
potential — V(%) is, in appropriate units,

Ueot V (x)u+-Au=0. (1)

This equation has a quadratically integrable solution
if and only if X has one of a discrete set of values called
eigenvalues, which depend upon V(x). We seek the
potentials ¥ (x) which make stationary some eigenvalue

1 P. S. Epstein, Proc. Nat. Acad. Sci. 16, 627 (1930).

2 J. B. Keller, Archive Ratl. Mech. and Anal. 5, 275 (1960).

3I. Tadjbaksh and J. B. Keller, Strongest Columns and Iso-
perimetric Inequalities for Eigenvalues, J. Appl. Mech. (to be
published).
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A of Eq. (1) among all potentials satisfying the condition
f Vr(x)dz=F. @

Here # and % are two real constants which characterize
the class of potentials under consideration.

Let us suppose that Vo(x) is a solution of this problem
and that #o(x) and A, are the corresponding eigenfunc-
tion and stationary eigenvalue. We introduce a family
of potentials V(x,e) depending smoothly upon a
parameter e, satisfying Eq. (2), and such that V(«,0)
=TVo(x). Then the corresponding eigenfunction #(x,e)
can be so normalized that it, as well as the eigenvalue
A(e), depends smoothly upon e. If we denote differentia-
tion with respect to ¢ by a dot, it follows that A(0)=0.
We now differentiate Eq. (1) and (2) with respect to e
and obtain

Tzt VM= —Au—~ Vu 3)
f Vr-1Vdz=0, @)

The inhomogeneous equation (3) has a quadratically
integrable solution only if the right-hand side is
orthogonal to #, the solution of Eq. (1). But since
u(x,¢) 1s a smooth function of e which is quadratically
integrable, it follows that % exists and is also quadra-
tically integrable. Therefore, the orthogonality condi-
tion is satisfied and it yields, when e=0,

f uVdx=0. (5)

—0

The choice of V(x,¢) is arbitrary except that V(x,0)
=Vy(x), that it be a smooth function of € and satisfy
Eq. (2). Therefore, V is arbitrary except that it must
satisfy Eq. (4). Thus Eq. (5) expresses the fact that uy®
is orthogonal to every function ¥V which, by Eq. (4), is
orthogonal to V"L This implies that #¢®is a constant
multiple of V*1. We shall choose the multiplier to be
unity, since # can be multiplied by a constant factor
and remain a solution of Eq. (1). Thus we have

u="Vo~1. (6)

Let us now eliminate V, from Eq. (1) by means of
Eq. (6), and obtain the following nonlinear equation
for u,:

Uozzt 1T DA gue=0. (7)

To solve Eq. (7) we multiply it by %o, and integrate,
obtaining

Uo 2+ ———u?T U D\ u2=0. (8)
n

The integration constant has been set equal to zero in
Eq. (8), since u, and #,, must vanish when x becomes

infinite, in order that u, be an eigenfunction. From
Eq. (8) we find

n—1 i
Uoz= (_7\0);140(14-—)\%02/"—1) . 9)
n,

To evaluate the integral which occurs in solving
Eq. (9), it is convenient to replace %, by Vo by means
of Eq. (6). Then Eq. (9) becomes

2(—}

n—1 ¥
Vo( 14 Vo) .
n>\o

The various solutions of Eq. (10) differ only by transla-
tions. We shall select that solution for which V¢(0)
=n/(n—1). Then Eq. (10) yields

(10)

0x™
n—1

2=N)t Yo n—1 \~
=f V“(l—l— V) av
n—1 nin—1 #Ao
n—1 \?}
=—-2tanh"1(1+ Vo). (11)
Ao

Upon solving Eq. (11) for V,, we obtain

—#\o (—ro)hx
Volx)= sech2[ ]
n—1 n—1

(12)

From Eq. (12) we see that V, is a periodic function of
x if Ao>0, while V=0, if Ay=0. Since the integral in
Eq. (2) would not exist, if ¥, were periodic, and no
eigenvalues would exist, if V=0, we conclude that
20<0. Then Eq. (12) shows that V, vanishes as |x|
becomes infinite. Since %, must also vanish at infinity,
we see from Eq. (6) that n>1.

Now Egs. (12) and (2) yield a relation among Ao, %,
and k which is

—mo\"2(n—1)
henydy= k. 13
(n—l) (.—7\0)%]; seer ey (13)

Since #>1 and A\¢>0, we see from Eq. (13) that £2>0.
The integral in Eq. (13) has the value?

fw O
sech®™ =
s Y T o i)

(14)

By using Eq. (14) in Eq. (13) and solving for Ao, we
obtain

—Ao= —F (n)R22n1,
Here F(n) is given by

[T

41 W, Grobner and N. Hofreiter, Infegraltafel (Springer-Verlag,
Berlin, Germany, 1949), Chap. IT, p. 162, Eq. (12).

(15)
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We have now found that for any £>0 and any n>1
there is exactly one potential V,(x) given by Eq. (12),
with Ao given by Eq. (15), which renders stationary
an eigenvalue of Eq. (1). There is no such potential,
if 250 or #<1. The corresponding eigenfunction ug
is, from Egs. (6) and (12),

o) = [ M sechz[(_)m)ix] }(Hm 7

n—1 n—1

Since #o(x)7%0, Ao is the lowest eigenvalue of the
potential Vo(x).

3. ISOPERIMETRIC INEQUALITIES AND
LOWER BOUNDS

Let us now assume that the stationary value A is
actually the minimum value of the lowest eigenvalue of
any potential satisfying Eq. (2), which we shall prove
in the next section. Then, if A is the lowest eigenvalue
of some potential V(x), we have A=\, provided V (x)
satisfies Eq. (2). If we define % in terms of V(x) by
Eq. (2), and use Eq. (15) for Ao we then have the

inequality © 2/@n—1)
k;—F(n)[ f V"(x)dx] :

Equality holds in Eq. (18) only if V(x)=V(x). For
each #>1 this inequality (18) is the isoperimetric
inequality we sought. It provides lower bounds on the
lowest eigenvalue A. A graph of F(n) is shown in
Fig. 1.

In the limit n=1, Eq. (18) yields the following lower
bound, obtained previously by Larry Spruch:

rz-1f [ wV(x)de-

—o

(18)

(19)

As »n tends to unity, the limiting form of the potential
Vo(x), given by Eq. (12), is the delta function for
which equality holds in Eq. (19).

To illustrate the use of Eq. (18), we shall now apply
it to a square well of depth V and width 2a. The

>

n L
| 2 3 4 B € 7 8 9 [ n

Fi6, 1. The function F (s), given by Eq. (16), as a function of
n. This function occurs in the isoperimetric inequality (18). As
7 becomes infinite, F(n) approaches unity.
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integral in Eq. (18) is then 2¢V™ and Eq. (18) becomes
N V= —F(n)(4a?V)V2r1, (20)
A simple calculation shows that the right-hand side
of Eq. (20) is largest when # satisfies the equation
T%(n)
*(n+3)
Xexp{(2n—1)[¥(n+3)—¥(®)]}. (1)
Here ¥(n)=T"(n)/T'(n). A graph of the lower bound
Eq. (20) with # determined from Eq. (21) is shown in
Fig. 2 as a function of a?V. For comparison the exact
value of X is also shown.

Let us now apply Eq. (18) to the exponential
potential of depth V and range a given by

40V =mn(n—1)

V(x)=Velzlle, 22)
Upon inserting Eq. (22) into Eq. (18), we obtain
N V=—F(n)(4a®V, /n2)t @D, (23)

The right-hand side of Eq. (23) is largest when »

Fic. 2. The best lower bound on the lowest eigenvalue of a
square well potential of depth V and width 2¢ is shown as a
function of a*V (solid curve). The exact lowest eigenvalue is
also shown for comparison (dashed curve). The ordinate is
—\/V, and the bound is computed from Eqgs. (20) and (21).

satisfies the equation

I%(n)
I (n+3)

Xexp{ 2n—1)[¥(n+3)—¥(n)—1/n]}. (24)

The lower bound on A\/V given by Eq. (23), with »
determined by Eq. (24), is shown in Fig. 3 as a function
of a?V.

As another example of the use of Eq. (18), let us

apply it to the inverse ath power potential of depth V
and range a given by

40>V =mnd(n—1)

V(x)=V/(1+a | x|) (25)
For this potential Eq. (18) yields
N V= ~-Fm)[4a*V/(na— 1)@, (26)

The bound in Eq. (26) is largest when » satisfies the
equation
402V =mn(n—1)(na— 1)} I*(n)/T2(n+1/2)]

Xexp{ (2n—D[¥(n+3)—¥(n)—a/(n—1)1}. (27)
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4. PROOF THAT X, IS A MINIMUM

To prove that A is the minimum value of the lowest
eigenvalue of any potential satisfying Eq. (2), we begin
with the variational characterization of the lowest
eigenvalue of a potential V(x). It is

)\=mvin[ j_‘ w(v}—sz)dx / f mvzdx]. (28)

Following a suggestion of H. F. Weinberger, we make
use of the Holder inequality which holds for any »>1

® 0 Yn © (n—1)/n
f‘szdx§ (f V"dx) (f v“""”‘ldx) . (29)

Equality obtains in Eq. (29) if and only if V1=
which is the same condition as Eq. (6). Upon inserting
Eq. (29) into Eq. (28), and making use of Eq. (2),
we obtain

© oo (n—1){n
)\_Z_min[ f vﬁdx—k”"( f v”"“"—l)dx) /
' —00 00
f vzdx]. (30)

—0

We must now show that the right-hand side of Eq. (30)
is minimized when v=1,. If it is, then the right side of
Eq. (30) is just Ao since for v, and ¥y equality holds in
Eq. (29), and, therefore, in Eq. (30). Then Eq. (30)
yields the desired inequality

A=A, (1)

A necessary condition for v to minimize the expression
on the right-hand side of Eq. (30) is obtained by
requiring the first variation of that expression to vanish.
This yields the condition

o ~1/n
vu—i-k””( f vzn/(n—vdx) eI N0, (32)

Here \' denotes the minimum value of the expression on
the right-hand side in Eq. (30). This equation becomes
identical with Eq. (7), if we introduce x'=cx and
N'=c¢"2\' where

o0 —1/n
c2=k”"( f vz”/(““)dx) :

Therefore, its solution is just ¢*~"u,(x), as we see from
Eq. (17), with A’ in place of Ae. Then Eq. (33), which
determines A’, becomes identical with Eq. (13) so
A'=)o. Therefore, if the minimum in Eq. (30) exists,
its value is Ao and the minimizing function is ve().

The existence of the minimum in Eq. (30) can be
proved by standard methods of the calculus of varia-
tions, although the proof is by no means trivial.

(33)

1.0
-\7v

° 100 200 300 400 600 600 700
aatv

800 200

Fi16. 3. The best lower bound on the lowest eigenvalue of the
exponential potential V(x)=V exp(—|x|/e¢) of depth V and
range ¢ is shown as a function of ¢3V. The ordinate is —\/V and
the bound is computed from Eqgs. (23) and (24).

5. AN UPPER BOUND

Let us now consider the isoperimetric problem
obtained by replacing the class of potentials satisfying
Eq. (2) by those satisfying the condition

f @) () da=t. @)

Here p(x) is a given function and % is a given constant.
By proceeding as in Sec. 2 we obtain, instead of Eq. (4),

f Vprdz=0.

Then instead of Eq. (6), we find from Egs. (4’) and (5)
uo*=p° or equivalently

(#)

uo(%)=p(%). (6")

Since u, is quadratically integrable, we see that p(x)
must also be so. Now Egs. (1) and (6’) yield

Vo(®)=—Xo—p""pza- (127)
From Eq. (2’) and (12’) we find Ao which is given by

([ ria—s) / [ s

If Ao is the maximal lowest eigenvalue of any potential
satisfying Eq. (2'), then A<\, or using Egs. (15)
and (2/),

xg( f:p;d - f_ :pﬁde) / f_:p’dx. (16)

But Eq. (16") is true, since the right-hand side is just
the Rayleigh quotient evaluated for the trial function
o(x). Thus we have found that this Rayleigh quotient is
the largest lowest eigenvalue of any potential satisfying
Eq. (2’) and it is attained for the potential in Eq. (12').

(15)

6. HIGHER DIMENSIONS

Some of the preceding considerations apply in any
number of dimensions. Even many of our equations
remain valid, if we interpret x as a vector and replace
%z; by V2u. With these changes Eqs. (1)-(7) remain
valid. Then Eq. (7) is the equation which must be
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satisfied by the eigenfunction %, of the potential V,
which makes A stationary. If we seek a spherically
symmetric solution #,(r), then Eq. (7) becomes, in
three dimensions,

“(m-+ (2/r)uur+uo”"’""”—i—}\guo-:0. (7//)

It has not been possible to solve this equation explicitly.

JOSEPH B.

KELLER

All of the equations of Sec. 4 remain valid, if we also
replace v.2 by (V)% However, the proof of the existence
of the minimum in Eq. (30) has not been carried out,
nor has it been shown that the minimizing potential, if
one exists, is spherically symmetric.

All the results of Sec. 5 hold in any number of
dimensions.

Errata: Statistical Dynamics of Simple Cubic Lattices. Model for the Study of Brownian Motion
[J. Math. Phys. 1, 309 (1960)]

Roserr J. RUuBIN
National Bureau of Standards, Washington 25, D. C.

In Egs. (16), (17), (19), (A1), and in the integral at the end of Sec. III (p. 312), replace V by —V
where it appears explicitly. In the fourth and fifth lines following Eq. (16), delete the expression in brackets

In Eq. (7a), replace 2N+1)"2 by 2N+1)™.
In Eq. (C2), replace In(30? by In(1/2%.
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