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A general approach to the problems of quantizing fields which 
have infinite-dimensional invariance groups is given. Space and 
time are treated on a completely equal footing. A Poisson bracket 
is defined by means of Green's functions, independently of the 
discovery or recognition of canonical variables, and is shown to 
satisfy all the usual identities. In accordance with the measure­
ment theoretical foundations of the quantum theory, the Poisson 
bracket (Le., commutator) is defined only for physically measur­
able group invariants. The Green's functions give a direct descrip­
tion of the propagation of small disturbances arising from a pair 
of mutually interfering measurements. 

In order to establish a correspondence between this approach 

INTRODUCTION 

T HE development of the quantum theory of any 
field, or set of interacting fields, whose dynamical 

equations remain invariant under an infinite-dimen­
sional group of transformations is always beset with 
special problems having no counterparts in simpler field 
theories. Historically, the first example of this situation 
was provided by the electromagnetic field and its 
associated group of gauge transformations. The 
problems of gauge invariance have by now been studied 
exhaustively, and workable techniques have been 
developed for dealing with them in a variety of quantum 
contexts. Moreover, the electromagnetic field itself 
has provided a prototype to which all generalizations 
of these techniques to other fields have been applied 
as a check. 

Experience has shown, however, that the electro­
magnetic field is probably not a very good prototype. 
Its invariance group, being Abelian, is too simple to 
indicate those generalizations which are likely to 
reveal the group theoretical structure of more compli-

* This research was supported in whole under contract by the 
U. S. Air Force monitored by the AF Office of Scientific Research 
of the Air Research and Development Command. 

and conventional canonical theory, a motivation for the adopted 
definition of the Poisson bracket is outlined with the aid of the 
fundamental theorem of canonical transformation theory. The 
rest of the discussion is logically independent of this, however. 
The general theory of "wave operators" and their associated 
Green's functions is briefly reviewed. Specific details connected 
with the group theoretical side of the theory are handled in such 
a way that problems of constraints are completely avoided. In 
the last section the general method is applied to the Yang-Mills 
field, as a nontrivial example. The problem of factor ordering is 
not studied. 

cated theories. Because of the consequent absence of a 
clear route to follow, effort has tended to spread out in 
various directions. One line of investigation has been 
to focus on the problem of constraints, to which the 
existence of the invariance group in question gives 
rise but in the study of which the group itself plays a 
minimal role. The trouble with the problem of con­
straints is that its formalization has always necessitated 
a falling back on the canonical fundamentals of a 
Hamiltonian or quasi-Hamiltonian theory.l The result­
ant asymmetry in treatment of space and time co­
ordinates does not generally fit comfortably with the 
invariance group, the parameters of which are space­
time functions having no temporal prejudices. This is 
especially true in a generally covariant theory in which 
the gravitational field is involved,! but it is also true in 
other cases. It is even true for electromagnetism, as 
the history of the subject shows. 

It is the purpose of this paper to present the outlines 
of a general approach to these problems which dispenses 
entirely with Hamiltonian ideas and treats space-time 
in a completely homogeneous fashion. The basis for 

1 P. A. M. Dirac, Can. ]. Math. 2, 129 (1950); Proc. Roy. Soc. 
(London) A246, 333 (1958); S. Deser and R. Arnowitt, Phys. 
Rev. 113,745 (1959). 
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this approach is a definition of the classical Poisson 
bracket by means of Green's functions, which is 
independent of any definitions of pairs of conjugate 
variables and which is, in effect, a straightforward 
extension of a definition originally proposed by Peierls.2 

The point of view is here adopted that Poisson brackets 
(i.e., commutators) should be defined only between 
group invariants. This automatically eliminates the 
need for subsidiary conditions, which have always to 
be specially tailored to each individual theory and which 
have proved so often bothersome in the past. Further­
more, this approach is in accord with the foundations 
()f the quantum theory as expressed in the general 
theory of measurement. Real physical measurements 
can be performed only on group invariant quantities, 
and the interference between two measurements which, 
via the uncertainty principle, in effect defines the 
commutator, is most immediately described not in 
terms of canonically conjugated variables at a given 
instant, but in terms of the Green's functions which 
express the laws of propagation of small disturbances 
and which satisfy certain fundamental reciprocal rela­
tions. In quantum electrodynamics this role of the 
Green's functions was demonstrated at a very early 
date in the classic paper of Bohr and Rosenfeld,3 which 
made no use of the Lorentz or any other gauge condi­
tion. The present paper may be viewed as the first step 
in an analogous demonstration for the general field 
theoretic case. 

Section 1 consists of an introductory discussion, in 
general terms, of differential "wave operators" and 
their associated Green's functions. In Sec. 2 canonical 
transformation theory is introduced in order to arrive 
at an appropriate definition for the Poisson bracket in 
an arbitrary field theory. Group theoretical details are 
examined in Sec. 3, and, with the proof that all the 
usual properties, including the Poisson-Jacobi identity, 
are satisfied by the suggested Poisson bracket, it is 
shown that the definition does not really depend for 
its consistency on the canonical arguments of the 
preceding section. In the form of the commutator, in 
fact, the definition can be justified by appealing solely 
to the uncertainty principle and the theory of measure­
ment. Finally, in Sec. 4, the methods of the earlier 
sections are applied to a specific example. Since the 
author has already given elsewhere4 a preliminary 
account of the application of these methods to the 
quantization of the gravitational field, a different 
example, the Yang-Mills field,6 is chosen here. 

It will be seen in the course of these derivations that 
the group theoretical side of the theory still plays a 
relatively small role in spite of the fact that the deriva-

2 R. E. Peierls, Proe. Roy. Soc. (London) A214, 143 (1952). 
I N. Bohr and L. Rosenfeld, Kg!. Danske Videnskab. Selskab, 

Mat.-fys. Medd. 12, 8 (1933). 
'B. S. DeWitt, Phys. Rev. Letters 4,317 (1960). 
'C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954). 

See also R. Utiyama, Phys. Rev. 101, 1597 (1956). 

tions are now fully "covariant" in the sense that 
space and time are placed on a completely equal 
footing. In the author's opinion, however, the role of 
the invariance group can be expected to increase when 
a study is undertaken of purely quantum problems, 
such as the factor ordering ambiguity which is not 
considered here. For, as has been emphasized by 
Klein, 6 the quantum theory can be regarded in many 
ways as a theory of the infinite dimensional unitary 
representations of the invariance groups which char­
acterize the physical system under consideration. 

1. WAVE OPERATORS AND GREEN'S FUNCTIONS 

The propagation of a small disturbance, whether in 
a set of interacting fields, or in an elastic physical 
medium, or in a collection of bodies interacting via the 
laws of celestial mechanics, is described by a linear 
differential equation of finite order, usually not higher 
then the second. Let us denote the dynamical variables 
appearing in such an equation by symbols such as 
if;i, q,G. These variables will be functions of one or more 
continuous parameters, or "coordinates." For definite­
ness we shall regard them as functions of four space-time 
coordinates Xll. It will be obvious, however, that 
everything we say will be equally applicable to theories 
with either more or fewer parameters, in pa~ticular to 
systems having only a finite number of degrees of 
freedom, with "time" as the single parameter. 

Different points of space-time will be distinguished by 
means of primes: x, x', x", etc. For compactness the 
point at which a given variable, such as if;i, is evaluated 
will be indicated by affixing primes to the index appear­
ing on the variable, e.g., if;i". For economy in the use of 
primes, the symbol z will also sometimes be used in 
place of x to designate a point in space time. Lower case 
Latin letters from the beginning of the alphabet 
(a,b,c,' .. ) will always be associated with the symbol z, 
while those from the middle of the alphabet (i,j,k,' .. ) 
will be associated with the symbol x. 

It will be convenient to express the differential 
operator appearing in the propagation equation formally 
as a continuous matrix Fw, the equation itself taking 
the homogeneous form 

(1.1) 

Typically Fir will be a linear combination of first or 
second derivatives of the delta function of x-x', with 
coefficients which may be functionals of some or all of 
the field variables appearing in the theory, for example 
involving these variables together with their derivatives 
up to some small (first or second) finite order. 

The Fii' will generally have three characteristic 

8 O. Klein, "Quantum theory and relativity," essay in Niels 
Bohr and the DefJelopment of Physics, edited by W. Pauli (MeGraw­
Hill Book Company, Inc., New York, 1955). 
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properties: (1) the property of being self-adjoint; (2) 
the property that well-behaved nonvanishing solutions 
of Eq. (1.1) really exist j and (3) the possession of unique 
"retarded" and "advanced" Green's functions. The 
property of being self-adjoint is characterized by the 
existence of a matrix operator psii' such that 

I (cf>iF i j'1/;i' _1/;iFwcf>i')d4x' 

= ~ I (cf>ij"'ij'1/;i' -1/;ipwcf>i')d4x' (1.2) 
aX'" 

for arbitrary cf>; and 1/;i. An immediate corollary of 
Eq. (1.2) is 

other hand, it is to be recalled that although solutions 
to "wave equations" [here collectively described by 
Eq. (1.1)J are everywhere bounded (which is what is 
meant by "well-behaved") they do not vanish in 
remote regions of space-time sufficiently rapidly to be 
normalizable. For if they did, then Fii, would possess 
true null eigenvectors and have no inverses at all. 
Operators having the three properties enumerated 
above will be called wave operators. A continuous 
matrix having a single unique inverse, on the other 
hand, will be called regular. The undifferentiated delta 
function is the simplest example of a regular matrix. 

A very important property of the Green's functions 
G±ii' is their ability, in the combination 

(1.7) 

I d4x f d4x' (cf>iFw1/;i' -1/;iFii'cf>i')d4x' = 0 (1.3) to express Huygens principle for a disturbance 1/;i: 

for fields cf>i, 1/Ii which vanish sufficiently rapidly in 1/1;= - I d'1;"" I d4x" 
remote regions of space time, which, in view of the 
arbitrariness of cf>i and 1/;', may be expressed simply as X (Gi';j"" i'k,,1/Ik" _1/;i' j"" i'k"Gk"i). (1.8) 

(1.4) 

The Green's functions associated with Fi;' are 
characterized by the equation 

IF f"'+-k" "d4 " ~ ., ik"~ 1 X = -u,' , 

with the conditions 

G-ii'=O for x<x', 
GHi'=O for x>x'. 

(1.5) 

(1.6) 

Here the symbol 5/' denotes in obvious fashion a 
product of a Kronecker delta with a delta function, 
while" <" is an abbreviation for "lies to the past of" 
and ">" is an abbreviation for "lies to the future of," 
well-defined motions of "past" and "future" being 
assumed to exist in the space time of parameters x"'. 
Typically these notions will be based on a metric of 
signature -+++ which mayor may not, itself, 
belong to the category of "field variables." In this case 
there will generally be a region of overlap of the 
domains past and future which may be removed by 
relabeling it the "present." Both G-ii' and G'Hi' 
vanish simultaneously in this region. In a nonrelativistic 
theory the "present" may collapse to a hypersurface. 

It is to be noted that Fi;', unlike an ordinary finite 
matrix, does not possess a unique inverse j both G-ii' 
and G+ii', as well as linear combinations of the two, 
are its "inverses." This fact is a direct consequence of 
the existence of well behaved solutions to Eq. (1.1), 
which may always be added to any "inverse."7 On the 

7 In theories for which Fourier transforms may be introduced 
(e.g., differential equation with constant coefficients), the existence 
of well-behaved solutions is revealed in the presence of poles on 
the real axis in the "energy plane." 

Here the value at an arbitrary point x of a function 1/I i 

satisfying Eq. (1.1) is expressed in terms of Cauchy data, 8 

on a hypersurface ~ (surface element ~",,) all points of 
which lie in the "present" with respect to one another, 
and which is customarily referred to as "spacelike." 
The proof of Eq. (1.8) is carried out by changing the 
surface integral into a volume integral with the aid of 
Gauss' theorem, and then using Eq. (1.2). For x>~ 
Eq. (1.8) becomes 

1/Ii= ifuture d4x' I d4x" 

X (G+i'iF i'k"~" -1/Ii'Fi'k"GH"i) , (1.9) 

while for x<~ it becomes 

1/Ii= Il: d4x' f d4x" 

X (G-i'iFpk,,1/Ik" -1/Ii'Fj'k"G-k"i), (1.10) 

the validity of both forms following immediately from 
Eqs. (1.1) and (1.5). The extension of the domains of 
integration arbitrarily far into the future and past 
respectively is permitted since the Green's functions in 
each case "cutoff" sharply beyond the point x. In the 
case of x lying on ~, the singularities of the Green's 
functions are to be interpreted in such a way that 

8 The operator j"'ij' is of one differential order lower than 
F w. If F Ii' is already of the first order, then there is no distinction 
between the Cauchy data ",' and f j"'w",i' d'x'. 
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Gi'i vanishes while f r' i'k,,(;k"id4x" has the form of a 
three-dimensional delta function. 9 

The function Gii' is known as the propagation function 
for the disturbance 1/;i. It satisfies the homogeneous 
equation 

(1.11) 

Because 1/;; satisfies the homogeneous Eq. (1.1) and 
because the Cauchy data on 1:: may be chosen completely 
arbitrarily, we may infer from Eq. (1.8) that Gii' 
satisfies not only Eq. (1.11) but also the equation 

IF G,"k"d4" - 0 ik" X - a (Ll2) 

However, since there is only one unique function with 
the kinematical properties of Gii' which satisfies this 
equation, namely, the negative transpose of Gii', we 
infer from this the laws of reciprocity 

(Ll3) 

(Ll4) 

which in turn permit us to rewrite Huygens principle in 
the form 

1/;i= i dl:p! I d4x" 

X (Gii' fl" 1'k,,1/;k" -1/;1'1'" i'k"Gik"). (Ll5) 

We note incidentally, from Eq. (1.14), that Fi1' 
possesses among its various inverses a symmetric inverse 

(Ll6) 

as befits a symmetric (i.e., self-adjoint) operator. 
We end this section by recording for later use the 

following identities: 

where 

Also, 

G-Hi' =8(x',x)G i i', 

G-ii' = -8(x,x')Gii', 

8(x,x') = {~ x>x' when 

when x<x'. 

G+iaG+b' l' _G-iaG-b' l' 
= (G+ia_G-ia)GH' l' +G-ia(GH' i' -G-b' i') 

(Ll7) 

(1.18) 

(1.19) 

2. DEFINITION OF THE POISSON BRACKET 

Consider now a field 1/;i whose dynamical properties 
are specified by an action functional S. The field 
equations which it satisfies may be written in the form 

S.i=O, (2.1) 

where the comma followed by an index is used to denote 
the variational derivOttive with respect to 1/;i at a point. 
Our approach to the Poisson bracket for this field will 
be based on canonical transformation theory and on 
the recognition of the action as the generator of a 
finite canonical transformation. Here it is necessary 
to keep in mind that the functional S appearing in 
Eq. (2.1) is the over-all space-time action which 
connects dynamical variables in the remote past with 
those in the remote future. We may make this explicit 
by writing 

(2.2) 

where the symbols 1/;~ and 1/;-00 designate any set of 
field quantities associated with the remote future and 
past respectively which suffice, without redundancy, 
to determine the "history" of the field. In this section 
we assume that such quantities exist without, however, 
at any time having need either to find them explicitly 
or to make other than symbolic use of them. 

In order to describe the dynamics of the field 1/;; in 
canonical terms it is necessary to "break into" the 
action at an arbitrary spacelike hypersurface 1::, and 
to express it as the sum of two parts: 

(2.3) 

Here the symbol1/;}; designates the same quantities as 
1/;~ and 1/;-,,,,, taken, however, on the hypersurface 1:: 
and determined by the stationary action principle (2.1) 
from the boundary conditions expressed by 1/;~ and 
1/;-~. It is to be noted that in a generally covariant 
theory involving the gravitational field, the hyper­
surface 1:: must itself be specified in terms of field 
variables, since the definition of spacelike then depends 
on the metric. 

We now invoke the fundamental theorem of canonical 
transformation theory: 

The variation in the functional form of the generator of 
a finite canonical transformation, due to independent 
infinitesimal canonical transformations of its argu­
ments, is equal to the d~fference between the correspond-
ing independent infinitesimal generators. JO 

Nearly every important theorem in classical mechanics 
is a corollary of this one. In order to apply it to the 
characterization of the Poisson bracket we consider the 

= [8(x',z')-8(x,z)JGiaGb' i'. (1.20) following change in the action: 

9 This rule requires modification when Fw is of the first differen­
tial order. The two terms in the integrand of Eq. (1.8) then make 
identical contributions, and both share the delta-function property 
when x lies on 2:. 

(2.4) 

10 A general proof of this theoren will be found in a previous 
paper by the author: Bryce S. DeWitt, Revs. Modern Phys. 29, 
377 (1957). 
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where f is an infinitesimal constant and B is an arbitrary 
functional of the field variables which is invariant 
under all infinite dimensional transformation groups 
possessed by the theory. This change, which may be 
regarded as a comparison between two slightly different 
physical systems, will induce a change in the dynamical 
variables, the precise nature of which depends upon the 
boundary conditions selected. For example, we may 
adopt advanced boundary conditions in which the 
dynamical states of the two systems are taken to 
coincide in the remote future. Since both the original 
and modified actions, when broken up as in Eq. (2.3), 
generate canonical transformations describing the un­
folding-in-time of their respective "histories," it is 
evident that the dynamical variables of the two systems 
on any space-like hypersurface ~ are themselves 
connected by an infinitesimal canonical transformation. 
Denoting the generator of this transformation by 
s+(~) and the corresponding variation in any ~­
associated field quantity h; by 0+ h;, we have, by 
definition, 

(2.S) 

the parentheses denoting the Poisson bracket. From the 
fundamental theorem, on the other hand, we have 

8s(l/too!I/t2:)=s+( co )-s+(~), (2.6) 

where the symbol 5 is used to denote the change in the 
functional form. Since the advanced boundary condi­
tions assure us that s+ ( co) = 0, it therefore follows that 

(2.7) 

For retarded boundary conditions, described by 
variations 0- and generators s-(~), with s-( - co )=0, 
the corresponding equations are 

5S(I/tl:II/t-00)=s-(~)-s-( - co), (2.8) 

0-h;= - (h;,s-(~»= - (h,5S(I/tl:II/t-00». (2.9) 

Under the variations o± associated with advanced or 
retarded boundary conditions, the segments S(I/toe 11/t2:) 
and S (I/tl: II/t-oo) of the over-all action suffer two inde­
pendent changes: (1) a change 0 in value due to the 
~hanging values of their arguments, and (2) the change 
o in functional form. The change 0 is determined simply 
by inserting the new field l/ti+O±l/ti into the old action. 
The fact that the new field does not satisfy the field 
equations of the original system is unimportant. 
Because of the stationary action principle only the 
variations in the arguments at the endpoints contribute. 
The change 5, on the other hand, is determined by the 
replacement (2.4): 

5S= fB=5S(1/t00 11/tl:)+5S(I/t2: II/t-oo). (2.10) 

In evaluating this infinitesimal change it suffices to 
use the old field I/ti in B. 

Equations (2.S), (2.9), and (2.10) together yield 

o+h;-o-h;=E(h,B). (2.11) 

Since any dynamical variable A may be constructed 
out of hypersurface-associated variables fl:, Eq. (2.11) 
may immediately be generalized to 

0+ A -0-A = f(A,B), (2.12) 

in which reference to spacelike hypersurfaces no longer 
appears. Equation (2.12) expresses essentially the 
content of Peierls' definition of the Poisson bracket.2 

Its utility rests on the fact that an independent evalua­
tion of the variations o±A is possible, as will be seen 
in the next section. It is important, however, to make 
two remarks about this definition. Firstly, our deriva­
tion of Eq. (2.12) is not an explicit one as was Peierls' 
in which the propagation of small disturbances in a 
system having a constraintless Lagrangian was studied 
directly. It proceeds instead from the fundamental 
theorem of canonical transformation theory, and 
although the existence of canonically conjugated 
variables which can be used to give the ordinary 
definition of the Poisson bracket [e.g., when it first 
appears in Eq. (2.S)J is, of course, assumed, it never, 
makes explicit use of them. In a theory possessing an 
infinite dimensional invariance group, in fact, proper 
canonical variables are usually extremely difficult to 
find. Nevertheless, in attempts to quantize such 
theories a great deal of effort has been devoted to the 
search for precisely these variables. On the other hand, 
these variables are rarely, if ever, of immediate physical 
interest, and therefore it is desirable to have a theory 
which is more accessible to direct physical intuition. 

The second remark is this: By focusing our attention 
on variables of immediate physical interest we restrict 
ourselves, in the definition of Poisson brackets, to 
physically measurable quantities, which are of necessity 
group invariants. But this is quite satisfactory from 
the point of view of Eq. (2.12) since the variations 
Il±A in any group invariant A will be well defined even 
though the variations Il±¥ti in the field variables them­
selves are not because of the possibility of performing 
infinitesimal group transformations. We see that with 
this restriction Eq. (2.12) in effect amounts to a 
generalization of Peierls' definition. By working directly 
with Green's functions, in fact, we shall demonstrate 
in the next section that the Poisson bracket (2.12) 
satisfies all the usual indentities and that it can therefore 
be disconnected completely from its canonical origins. 

3. THE INVARIANCE GROUP AND ITS EFFECT ON 
THE DETAILS OF THE THEORY 

The representation of the infinite-dimensional in­
variance group of the theory, which is provided by the 
field variables I/ti, may be expressed in the infinitesimal 
form 

(3.1) 

where the functions O~L are infinitesimal group param-
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eters. Here, capital Latin indices from the middle of 
the alphabet (L,M,N,···) will be associated with the 
symbol x, while those from the beginning of the alphabet 
(A,B,C,···) will be associated with the symbol z. 

The representation (3.1) need not be linear in 1/Ii but 
may be quite general. The only restriction on it is the 
identity 

J (RiA.i ,Ri'B,-RiB'.j'Ri'A)d4x' 

= J RiueL' AB,d4x', (3.2) 

where the eL'AB' are the structure constants of the 
group, which in turn satisfy the identity 

f (eLAM,eM' B'c,,+eLB'M,eM' C"A 

+eLc"M,eM'AB,)d4x'=O. (3.3) 

Typically RiL , will be a differential operator; that is, a 
linear combination of the delta function and its deriva­
tives, with coefficients involving the field variables and 
their derivatives. It is characteristic of the field theories 
which are of interest in physics that a homogeneous 
quadratic function of this operator, of the form 

where gij' is a symmetric regular continuous matrix 
having a unique inverse gij', can always be found which 
is a wave operator possessing unique Green's functions 
G±AB'. The choice of giF is not necessarily unique, but 
having made it we stick to it, and use it together with 
its inverse to raise and lower the field indices i, j', 
"', etc. 

It is evident from Eq. (3.1) that a group invariant A" 
is characterized by the condition 

(3.5) 

The action S, in particular, will satisfy this condition 
independently of the field equations. This means that 
the field equations themselves are not all independent 
of one another but are subject to constraints. It is 
assumed, of course, that the invariance group alone 
gives rise to the totality of conditions (3.5). That no 
further conditions can be obtained by taking variational 
derivatives is assured by the identity (3.2). 

By taking the variational derivative of Eq. (3.5), 
with A replaced by S, it is easy to show that under the 
group transformation (3.1) the field equations (2.1) 
are replaced by linear combination of themselves. 

We have 

liS .= Js . ·,lI,'·J'd4x' 
" ." 'I' 

(3.6) 

In this way we see how the invariance of the action 
insures the invariance of the field equations. It will be 
noted that when the field equations are satisfied the 
second variational derivative of the action satisfies 

(3.7) 

The continuous matrix S,w therefore possesses true null 
eigenvectors and can have no inverses. For the field 
theories which are of interest in physics, however, it is 
always possible to find a symmetric regular continuous 
matrix gAB' such that the combination 

is a proper wave operator with unique Green's functions 
G±ii'. The matrix gAB' together with its inverse gAB' 

will be used to raise and lower the group indices 
A, B', "', etc. 

Let us now consider the change (2.4) in the action. 
Under this change the field variables will suffer a 
corresponding modification lI±if;i which satisfies the 
equation 

lI±S,i= f S,iJ'lI±if;Fd4x'= -eB,i' (3.9) 

The lI±if;i are, of course, not well defined, being deter­
mined only up to a transformation of the form (3.1). 
In virtue of Eq. (3.5), however, the corresponding 
change in any invariant A is well defined. It is evident 
that the general solution of Eq. (3.9) is obtained by 
adding (3.1) to an arbitrary linear combination of 
particular solutions determined by appropriate bound­
ary and supplementary conditions. The boundary 
conditions to be adopted are already implied by the 
± signs. As the supplementary condition it is con­
venient to choose 

(3.10) 

If this condition is not already satisfied then it is easy 
to see that it may nevertheless always be imposed by 
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carrying out an infinitesimal group transformation 
(3.1) with the group parameters choosen according to 

(3.11) 

When the supplementary condition (3.10) is satisfied, 
it follows at once from (3.8) that 

(3.12) 

The solution of Eq. (3.9) may, therefore, be written 
immediately in the form 

(3.13) 

It is important to check, however, that this solution in 
fact satisfies the supplementary condition (3.10) 
which was used to get it in the first place. This can be 
done by first deriving an important relation between 
the Green's functions G±AB' and G±ij'. We note, using 
Eqs. (3.4), (3.7), and (3.8), that 

(3.14) 

Therefore, 

f d4x f d4z'F AB,R·rG±ij' 

= fd4x fd4xIlRk"AFk",G±iJ'=-Rj'A. (3.15) 

But also, 

Equations (3.15) and (3.16) are both wave equations 
in the operator FAB" having the same inhomogeneous 
term, -Ri'A. The functions satisfying these equations 
have the same kinematical properties and must, there­
fore, be identical; that is, 

(3.17) 

On using this equation with the index A in the lower 
position, we then have, from (3.13), 

which vanishes in virtue of Eq. (3.5) (with A replaced 
by B), thus showing the complete self-consistency of 
the condition (3.10). 

The explicit form for the Poisson bracket (2.12) now 
follows from Eqs. (1.7) and (3.13). On writing 

c5±A=fA ,o±.,.id'x t' 'Y , (3.19) 

we have 

(A,B)= f d4x f d4x'A"Gii'B,J', (3.20) 

a result which is immediately interpretable in terms of 
the mutual interference of measurements performed on 
A and BY That the Poisson bracket (3.20) is unique 
and independent of possible freedom of choice of the 
regular matrices gij' and gAB' follows from the unique­
ness of this mutual interference. 

The infinitesimal canonical transformation 0+ A -0-A 
generated by the group invariant B has a special 
characteristic worth noting. Since O+S,i-O-S,i=O it 
follows that the field 1/;i+fJ+1/;L o-1/;i satisfies the field 
equations if 1/;i does. Hence we see that group invariants 
transform solutions of the field equations into other 
solutions. The consequent role of group invariants as 
infinitesimal generators for the group of mappings of 
the set of all physically distinct solutions of the field 
equations into itself guarantees that the Poisson 
bracket (3.20) satisfies all of the identities usually 
associated with Poisson brackets; for the Poisson 
brackets may be mapped into the commutators of the 
Lie ring associated with the mapping group. 

These identities may also be verified directly. The 
antisymmetry of the Poisson bracket follows from the 
reciprocity law (1.13). The identity 

(A ,Be) 0= (A ,B)e + B (A ,e) (3.21) 

is obvious. The verification of the Poisson-Jacobi 
identity, on the other hand, requires a little computa-

11 The mutual interference is more naturally expressed in terms 
of retarded Green's functions. Denoting by aHA the retarded 
change in A produced by the change (2.4) in the action, and by 
8AB the corresponding change in B with B replaced by A in (2.4), 
we have 

8HA = eJd4xJd4x' A .G-w B " .t. ,'J 

aAB=eJd4x J d4x'B,;G-WA,i" 

In virtue of the reciprocity law (1.14), therefore, Eq. (2.12) may 
be reexpressed in the form 

8AB-8B A =e(A,B), 

which is the original form of Peierls' definition. We note also that 
the retarded change in A produced by B is equal to the advanced 
change in B produced by A, and vice versa. 
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tion. By straightforward application of (3.20), we find 

(A, (B,C)) + (B,(C,A»+ (C,(A,B» 

X[A ,iaB ,j'C,k" (Gk"aGii' + Gi'aGk" i) 

+A ,iB,j'aC,k" (GiaGi'k" +Gk"aGii') 

+A ,iB,i'C,k"a(Gj'aGk"i+GiaGi'k") 

The first three terms in the square brackets vanish 
because of the reciprocity law (1.13) and the inter­
changeability of the order of variational differentiation. 
In order to evaluate the fourth term it is necessary to 
investigate the variational derivative of the propagation 
function itself. By taking the variational derivative of 
Eq. (1.5), we find 

of which the solution, on taking into account the 
kinematics of the Green's functions and using Eqs. (3.8) 
and (3.17), is 

= f d4z' f d4z"G±ib'S,ab'c"G±c" j' + f d4z' 

+RiA"G±A" L"Rb,L",aG±b' j'). (3.24) 

Upon insertion into (3.22) the last term of (3.24) gives' 
no contribution, since the contraction of RiA" and 
Ri'A" with A ,i and B,j', etc., vanishes on account of 
the invariance property' of A, B, and C as expressed 
by Eq, (3,5). With use of Eqs. (1.7) and (1.20)/2 
therefore, the expression (3.22) reduces to 

x {[8(x" ,z") - (I (x' ,z') ]GiaGj'b'Gcllk" 

+ [8 (x,z") -8(x" ,z') ]GjlaGk"bl Gc"i 

+[8(x',z")-8(x,z')]GkllaGib I Gc" i'l. (3.25) 

12 The author is indebted to Dr. T. Imamura for pointing out the 
utility of the identity (1.20) in the present connection. 

By permuting the indices a, b', e" and, correspondingly, 
the points z, z', z" (which is permitted because of the 
complete symmetry of S,ab'c" in its indices) it is easy 
to see that the various terms of this expression cancel 
one another, thus confirming the Poisson-Jacobi 
identity. 

The foregoing theory of the Poisson bracket may be 
regarded (particularly in its measurement-theoretical 
interpretation) as a correspondence principle limit of the 
quantized theory, In a more accurate treatment, in 
which the Poisson bracket is viewed as an actual 
commutator-which is to say, in which one is interested 
in effects beyond the lowest order evaluation of the 
mutual interference of two measurements-the verifica­
ton of the Poisson-Jacobi identity is not so simple, for 
the reason that the propagation function is itself a 
q-number in all except completely trivial linear theories, 
and may stand in different orders in pairs of terms 
which would otherwise cancel one another in expressions 
such as (3.25). The operator properties of the propaga­
tion function indicate that the commutator form of 
Eq. (3.20) should correctly be written 

f f 
1M oB 

[A,B]=i d4x d4x'-·Gijl._. 
Ot{!i oy,jl 

(3.26) 

(We use units in which h=e= 1.) Here the dots signify 
that the propagation function is first to be inserted as a 
replacement for &/Ii' in all the places in which it occurs in 
the variation oB (assuming that A and B are expressible 
in terms of products of vI's) and that the resulting 
"product" is then to be inserted as a replacement for 
ol/;i in the variation oA, or, alternatively, that the 
process of insertion is first performed in oA and then in 
OB.13 That the two procedures are equivalent is evident 
from the familiar properties of commutator brackets 
when one takes note of the fact that in computing the 
commutator of two group invariants [of which the 
characterization (3.5) should now be replaced by the 
more rigorous form f(M/&/Ii)·R i

A d4x=0], one may 
work directly with the I/;'s out of which they are built, 
proceeding as if the simple commutation rule 

(3.27) 

were valid.14 These observations, of course, merely 

13 If Fermi statistics are required than the 1//s must come in 
pairs in any group invariant, and aA/ay,; should be taken as a 
"right derivative" and aB /ay,i' as a "left derivative" with respect 
to each pair. The process of insertion of the propagation function 
then involves the pairing of a y, from A with a y, from B in an 
antisymmetrized combination. 

14 The anticommutator should, of course, appear here when 
Fermi statistics are involved. It will be observed that this requires 
the propagation function to satisfy a symmetrical' reciprocity 
law GW=G;I; in place of Eq. (1.13). This does not lead to an 
inconsistency, however, because the wave operator Fii' turns out 
to be antisymmetric instead of symmetric in precisely those cases 
in which Fermi statistics are required. The alterations which 
this requires in the results of Sec. 1 are straightforward and will 
be left to the reader. 
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shift the question of the consistency of the rigorous 
quantum theory onto the propagation function itself 
and its correct definition as an operator. We shall not, 
however, pursue this problem further here. 

A final remark should be made about the structure 
of the group invariants, A and B, appearing in a 
Poisson bracket. Heretofore, we have always had in 
mind, for each of these quantities, some explicit 
functional expression involving the vis. Actually these 
quantities are defined only modulo the field equations. 
It is straightforward to show, however, that this 
freedom leaves the value of the Poisson bracket 
unaffected. Let us, for example, replace B by 

(3.28) 

where the ji are arbitrary coefficients. [The group 
invariance of the second term follows from Eq. (3.7) 
together with the field equations.] We have 

X fd4 "A ·Gij'S· fk u 
X ,t .l'k" , (3.29) 

in which terms in S,i have been dropped after the 
variational differentiations have been performed. In 
virtue of Eqs. (1.12), (3.8), and (3.17), however, this 
becomes 

(A,B')= (A,B)- f d4x f d4x' f d4x"f d4zA,i 

which reduces simply to (A ,B) in view of theinvariance 
condition (3.5). 

4. YANG-MILLS FffiLD 

The invariance group of the Yang-Mills theory5 is 
the infinite-dimensional group which is obtained by 
taking the direct product of the rotation group in 
three dimensions (isospin group) with itself an infinite 
number of times, once for each point of space time. 
The fact that the starting group is. chosen to be the 
rotation group is unimportant as far as the mathemat­
ical structure of the theory is concerned, and we shall in 
this section take it to be an arbitrary finite dimensional 
Lie group, with structure constants CLMN. 

The homogeneous linear representations of the 
infinite dimensional group are restricted by differen-

tiability requirements to be in one to one correspondence 
with the linear representations of the starting group. 
The infinite dimensional group has, however, inhomo­
geneous linear representations which have no counter­
parts in the theory of the starting group, and which 
are introduced through the notion of "invariant 
differentiation." One begins with a field, represented by 
a column vector if;, which provides an arbitrary linear 
representation of the group through an infinitesimal 
transformation law of the form 

(4.1) 

where the GL are matrices (infinitesimal generators) 
satisfying the commutation law 

(4.2) 

One then introduces another auxiliary field A LI' (the 
Yang-Mills field) in terms of which the "invariant 
derivative" of if; is defined: 

(4.3) 

(Here the comma followed by a Greek index denotes 
ordinary differentiation with respect to a space-time 
coordinate.) The group transformation law for the 
field A L" is chosen in such a way as to make if;." have 
the same transformation law as if;: 

(4.4) 

By making use of Eq. (4.2) together with the relation 
Oif;'I'=GL(if;o~L),,,, it is not hard to see that ALI' must 
suffer the infinitesimal transformation 

(4.5) 

That Eq. (4.5) provides a new type of representation 
of the group (linear inhomogeneous) may be verified 
in a straightforward manner by computing the com­
mutator (3.2) of two successive infinitesimal transfor­
mations. If it were not for the presence of the inhomo­
geneous term -o~L,,, the transformation (4.5) would 
simply be that of the so-called "adjoint representation," 
the existence of which depends on the fact that the 
structure constants, when regarded as matrices in their 
first and last indices, themselves satisfy the commuta­
tion law (4.2) for infinitesimal generators [d. Eq. (3.3)]. 
In the case of Abelian groups, for which the structure 
constants vanish, however, it is precisely the inhomo­
geneous term which renders the representation: non­
trivial. It is to be noted that in all questions of group 
representations we are here concerned only with the 
local group in the neighborhood of the unit element. 
If the starting group is compact the representation 
(4.5) is actually multivalued. For, owing to the 
finiteness of the group volume, any single valued 
function on the group must be periodic in the group 
parameters, whereas the inhomogeneous term of (4.5), 
even when integrated to give the finite transformation 
law, lacks this periodic property. 
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Indices induced by repeated invariant differentiation 
do not commute. We have, in fact, 

1/;.".-1/; .• ,,= -GLFL".I/;, (4.6) 

FL".=AL.,,,-A L",.+CLMNAM,.AN.. (4.7) 

It is easily verified that the field FL". transforms 
according to the homogeneous adjoint representation. 
It therefore possesses an invariant derivative defined 
according to the law (4.3), which here takes the form 

FL,. •. ~=FL".,~+CLMNAMf1FNI'" (4.8) 

Straightforward computation shows that this invariant 
derivative satisfies the identity 

FL" •. ~+FL'f1.,,+FLf1".,=O. (4.9) 

Corresponding to every linear representation (4.1) 
there exists another given by the law 

(4.10) 

the tilde denoting the transpose. The field cp is said to 
transform "contragradiently" to the field 1/;. For a 
compact starting group the two representations are 
always equivalent if they are real. This follows from 
the fact that a real matrix representation of a compact 
group is always equivalent to an orthogonal one (the 
proof of which involves the classic procedure of integrat­
ing over the whole group) and the fact that for an 
orthogonal representation the generators GL are 
antisymmetric. It suffices to restrict our attention here 
to real representations, since a complex representation 
can always be regarded as a real representation of 
higher dimensionality. 

It often happens that the two representations are 
equivalent even when the starting group is not compact. 
We shall now assume this to be the case, regardless of 
the compactness or noncompactness of the starting 
group. We shall also assume the equivalence to hold 
for the adjoint representation. We may then write 

(4.11) 

-CLMN=gNJCJMKgKL, gLKgKM=liLM, (4.12) 

where -y and (gMN) are certain nonsingular real ma­
trices.Ili The matrix gMN and its inverse gMN will be 
used to raise and lower group indices; Eq. (4.12) 
itself insures that this is an invariant process. The 
matrix -y must be either symmetric or antisymmetric 
whenever the matrices GL are irreducible.16 This follows 
from the fact that Eq. (4.11) implies 

(4.13) 

1& With the aid of the identity (3.3) satisfied by the structure 
constants it is easy to show that one may choose gM N = -cK MLCL N K 

whenever the eigenvalues of the latter matrix are all different 
from zero (e.g., in the case of compact semisimple groups). 

16 We mean irreducible by means of real matrices. They may 
still be reducible to a complex form. 

which, combined with the fact that det (-y-1-y -) = 1, 
requires -y-l-y-=±1. We may normalize -y so that 
det -y=±1. . 

If two fields I/; and cp transform contragradiently it 
is easy to see that the "scalar product" cp-", is a group 
invariant. When Eq. (4.11) holds it is possible to 
construct quadratic forms which are invariant, for 
example #;, where 

(4.14) 

It will be noted, however, that if -y is antisymmetric, 
the quadratic form #; will vanish identically unless the 
field I/; satisfies Fermi statistics. 

For the remainder of this section we shall consider 
the case in which -y and gMN are symmetric. We shall 
take I/; to be a simple scalar field of mass m in a Lorentz 
invariant theory. The Lagrangian function of the 
Yang-Mills theory6 then takes the form 

(4.15) 

for the combined fields I/; and A L". For simplicity we 
here use an imaginary fourth coordinate in a Minkowski 
system and write all coordinate indices in the lower 
position. The stationary action principle based on the 
Lagrangian (4.15) leads to the field equations 

O=c5S/c5A L,,= -FL" •.• +1[;(hl/;.", 

O=oS/c51f;=I/;.",,-m21/;. 

(4.16) 

(4.17) 

By means of these equations the field A L" is dynamically 
coupled to the field 1/;. When the invariance group is 
non-Abelian the field A L" is also coupled to itself. A 
remark is in order concerning the strength of this 
coupling, which at first sight would seem to be fixed 
since no explicit coupling constants appear in the 
Lagrangian (4.15). The strength of the coupling is 
actually determined by the scale chosen for the "co­
ordinate" or parameter mesh in the neighborhood of 
the unit element in the abstract group space, and is 
therefore completely flexible. A transformation from 
one parameter system to another would cause a change 
in the values of the structure constants and a rescaling 
of the field A L", and "coupling constants" would then 
make an explicit appearance. 

Under the change (2.4) in the action the fields A L" 

and I/; suffer variations c5±A L" and c5±..p satisfying 

- EoB/M L,,= c5±(oS/M L,,) 

= -O±AL •. ".+c5±AL" ... -CLMNFN".o±AM. 
+lfGLGMl/lc5±A M"+lfG~±..p.,, 

-If.,,GLc5±..p, (4.18) 
- Ec5B/c5lf=c5±(oS/c5lf) 

= 2GLI/;."c5±A L,,+GLI/;c5±A L"." 
+c5±I/;.",,-m2c5±..p. (4.19) 

As supplementary condition on these variations, it is 
convenient to choose 

(4.20) 
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If this condition is not already satisfied, it may be 
imposed by performing a group transformation for 
which the parameters O~L satisfy17 

O~L'I'I'=o±A L,..". 

This equation is solved by 

where the Green's functions G±LM, satisfy 

G±LM,.,.,.= -OLM,. 

(4.21) 

(4.22) 

(4.23) 

When condition (4.20) is satisfied, Eqs. (4.18) and 
(4.19) reduce to 

o±A L".,,- 2CLMNFN".o±A M,+ifi<hGMo±A M,. 
+ifiG~±Y;.,,-ifi.,.GLO±Y;= - roB/M L,., (4.24) 

functions gLM' and Ow are defined by the equations 

gLM'.,.(X,.-x',.) 
== (gLM,.,.+CLKN AKl'gNM') (Xl'-X'I') = 0, (4.35) 

oW'I'(x,,-X'I') 
== (o#'.I'+GLALl'ow)(xl'-x'I')=O, 

together with the boundary conditions 

lim gLM,=gLM, 
:t'-.:x; 

lim ow=unit matrix. 
x'-+z 

(4.36) 

(4.37) 

(4.38) 

The functions VLM', VLI'M'>', VLI'''''' V",M'>', V#' are given 
by infinite series of the general form 

00 

V= L: vn(x-x')2n, 
n-o 

(4.39) 

(4.25) the coefficients of which satisfy the recurrence formulas 

These equations are solved with the aid of a set of 
Green's functions G±LI'M'>', G±LI'''''' G±",M'>', G±",,,,, which 
satisfy the simultaneous equations 

G±LI'M,>,.~~-2cLKNFN ~±K~M,>,+ifiGLGfC1/;G±K"M'>' 

+ifiGLG±",M,.,.,.-ifi.,.GLG±",M'>'= -O,..oLM" (4.26) 

G±L,."" .~~- 2cL KNFN ~±K ~"" +ifiGLGfC1/;G±K ,.",' 
+ifiGLG±w.,.-if;.,.GLG±w=O, (4.27) 

These Green's functions, in the symmetric combination 
(1.16) from which the retarded and advanced parts are 
easily re-extracted, can be shown18 to have the following 
explicit structure: 

GLM,= (4?r)-1[gLM,O«X-X')2) 
-VLM,8( - (X-X')2)J, (4.30) 

GLI'M"= (4?r)-1[gLM'0I'.O«X-X')2) 
-VL"M,.,8( - (X-X')2)J, (4.31) 

GL,."" = - (4?r)-lVLI'",,8( - (X-X')2), (4.32) 

G",M',' = - (4?r)-lV",M,.,8( - (X-X')2), (4.33) 

G",,,,, = (4?r )-1[0",,,,'0 «X- X')2) 
-vw8( - (X-X')2)]. (4.34) 

Here, 8( - (X-X')2) is the step function which vanishes 
outside the light cone and equals unity inside. The 

17 The invariant differentiation law for the infinitesirnals a~L is 
determined by the fact that they may be regarded as transforming 
according to the adjoint representation. This permits Eq. (4.5) 
to be written in the form aA LI' = -a~L.I" which illustrates a special 
case of the rule that any variation in ALI" unlike ALI' itself, 
transforms according to the homogeneous adjoint representation. 

18 B. S. DeWitt and R. W. Brehme, Ann. Phys. 9, 220 (1960). 

Vo LM'+VO LM',I'(XI'-X',.) = -jgLM'.I'I" (4.40) 

Vn LM,+(n+1)-lvn LM'.,.(XI'-x',.) 
= -in-1(n+1)-lvn-l LM'.I'I', (4.41) 

Vo L,.M'>'+Vo L,.M'.' .~(x~- x'~) 
= -i(O,.>gLM'.a~-2cLKNFN,.>gKM' 

+O,..ifiGLGKif;gKM,), (4.42) 

= -in-1(n+l)-1(vn-l LI'M"'.a~-2cLKNFN,.~Vn-l K~M'>' 
+ifiGLGKif;vn-l KI'M,.,+ifiGLVn-l >/1M'>'.,. 

-if;'I'GLVn-l "'M"')' (4.43) 

Vo L"",,=O, (4.44) 

v" L"",,+(n+l)-lvn LI'''''.a(Xa-X',) 
= -in-1(n+1)-1(vn-l L""" .• a-2cLKNFNI'.vn_l K."" 

+ifiGLGKI/;Vn-l KI'",,+ifiGLVn-l ",,,,'.1' 

-if;'I'GLVn-l w), (4.45) 

Vo ",M'>'=O, (4.46) 

v" >/1M'.' + (n+ l)-IV" "'M'>'.aCX~-X'.) 
= -in-1(n+1)-1(vn-l "'M"'."I'-m2vn-l ",M'.' 

+2GLif;.I'Vn-l L"M'v')' (4.47) 

Vo #'+vo w'I'(X,,-X'I') = -l(ow."I'-m2ow), (4.48) 

v,. w+ (n+ l)-IV" #'.I'(XI'_X/~) 
= -in-1(n+1)-1(vn_1 #'.",,-m2vn-l W 

+2GLif;."Vn-l L,.",,), (4.49) 

for n= 1, 2, 3···. Each of these equations may be 
integrated along each straight line emanating from the 
point x', and all the v's are thereby uniquely determined. 
The series (4.39) is everywhere convergent provided 
A L" and if; are bounded functions. 
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The solutions of Eqs. (4.24) and (4.25) may be 
expressed in the form 

J5±A L,.= ef [G±L,.M'"(IlB/IlAM'.,) 

+G±L,..p,(IlB/Il~')Jd4X', (4.50) 

Il±,ft=ef [G±.pM'"(IlB/IlAM'.,) 

+G±W(IlB/Il~')Jd4X', (4.51) 

from which the Poisson bracket immediately follows: 

IlA IlB) 
+---Gw~_ . 

Ill/; Ill/;' 
(4.52) 

In order to verify that the solution (4.50) satisfies the 
supplementary condition (4.20), we must establish 
some identities, analogous to Eq. (3.17), involving the 
Green's functions G±L,.M'" and G±L,..p'. By taking the 
invariant divergence of Eqs. (4.26) and (4.27), permut­
ing the order of invariant differentiations, making use 
of Eqs. (4.2), (4.16), (4.17), (4.28), and (4.29), and 
taking note of the fact that CLMN is completely antisym­
metric in its indices [which follows from Eq. (4.12)J, 
it is not hard to establish the following relations: 

G±LpM,.,.,.~~+~LGKy;G±K,.M,.,=IlLM"" (4.53) 

G±L,..p,.~~+~LGK1/;G±K,..p,=~GLIl(x-x'). (4.54) 

From these relations it may be inferred that 

G±L,.M"'."= -G±LM, .• " 

G±L,..p'.,,= -G±LM,~'GM', 

(4.55) 

(4.56) 

where the G±L,lf' are Green's functions similar to the 
G±LM, of Eq. (4.23) but satisfying the slightly more 
complicated equation19 

(4.57) 

On taking the invariant divergence of Eq. (4.50) we, 
therefore, have 

Il±AL,..,.= - Ef [G±LM, .• , (IlB/IlAM'.,) 

+G±LM'~'GM'(IlB/Il~')Jd4X', (4.58) 

which, after an integration by parts, vanishes in virtue 
of the identity 

(4.59) 

which is necessarily satisfied by any group invariant, as 
may be readily inferred from the transformation laws 
(4.1) and (4.5). Consistency is, therefore, established. 

19 The reason for the difference between the two Green's 
functions here stems from the fact that the supplementary 
condition (4.20) actually renders the propagation equations 
(4.24) and (4.25) slightly nonself-adjoint. A less convenient choice 
of supplementary condition restores the self-adjoint property. 
The whole of the theory of Sees. 1 and 2 can be worked out for 
nonself-adjoint wave operators, but for the sake of clarity the 
author has refrained from doing this. Naturally any elements of 
nonself-adjointness which are arbitrarily inserted into the theory 
can have no effect on the identities satisfied by the Poisson 
brackets taken between group invariants. 
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The analytic n-point function in momentum space in quantum field theory is studied. Its different 
boundary values fo; real value of the argument are determined, and a necessary and sufficient condition 
for them to be obtamable from the Wightman functions is given. The conditions are relativistic covariance 
support pro~erties in coordinate space (retardedness), two-term identities for momentum below threshold 
(corr.e~pondmg to spectru~ conditions) and four-term identities (Steinmann relations). The first three 
condlt~o~S are t=anslatabl~ mto a statement about the domain of analyticity of the n-point function: it is 
analytic m a uniOn of vanous extended tubes plus the points of contact of two neighboring tubes for real 
part of one momentum below threshold. 

1. INTRODUCTION 

THE retarded functions (the vacuum expectation 
values of retarded products of field operators) in 

quantum field theory are, as is well known, boundary 
values of an analytic function in momentum space. In 
this paper, we will attempt a systematic investigation 
of this analytic function and its boundary values. Such 
an investigation has also been made independently by 
Ruelle,! Steinmann,2 and Burgoyne.3 The present work 
puts emphasis on the geometrical nature of the problem 
in contrast with the algebraic method of Steinmann and 
Burgoyne. The method of Ruelle has some common 
features with the present work but we believe that ours 
is more explicit and detailed. 

First we consider the analytic function in the energy 
componen~ o~ly, and we easily obtain all its boundary 
values whIch mclude all the conventional retarded and 
advanced functions. These boundary values will be 
called generalized retarded functions (r function). 
Their number is 6, 32, 370, and 10932 for three- four­
five-, and sixfold in contrast with 6 24 120 720 fo; 
the Wightman functions. "" 

By using a generalization of the fJ function, we can 
express generalized retarded functions in terms of 
Wightman functions and the latter in terms of the 
former in a compact manner. Furthermore, we obtain 
necessary and sufficient conditions for generalized 
retarded functions to be obtainable from Wightman 
functions satisfying the usually considered conditions, 
namely, (W1) relativistic covariance, (W2) local com­
mutativity or anticommutativity, and (W3) certain 
mass spectrum conditions. The resulting conditions on 
the r function are (R1) relativistic covariance, (R2) 
support properties in x space (retardedness or advanced­
ness), (R3) two-term identities in momentum space for 
momentum below threshold, (R4) four-term identities. 

* Supported in part by the U. S. Office of Naval Research. 
t. Pre~ent address: Department of Nuclear Engineering, Kyoto 

Umverslty, Kyoto, Japan. 
1 D. Ruelle, thesis, Brussels, 1959. 
2 O. Steinmann, Helv. Phys. Acta 33, 347 (1960). 
3 N. Burgoyne (private communication) ; also see H. Araki and 

N. Burgoyne, Nuovo cimento 8, 342 (1960). 

The four-term identities have first been found by 
Steinmann4 for the four-point function. 

The aforementioned analytic function can be ex­
tended to a covariant analytic function in all energy 
momentum components. The properties (Rl)-(R3) are 
translatable into a statement about the domain of 
analyticity of this analytic function. Namely, it is 
analytic in the union of various extended tubes plus 
points of contact of two neighboring tubes for real 
parts of one momentum below threshold. We have not 
succeeded in translating (R4) into a statement about 
the domain of analyticity. 

The time-ordered function can also be expressed as 
a boundary value of the same analytic function. The 
boundary values must then be approached from a direc­
tion which depends on the value of the real part of the 
momenta. 

All the results are valid for arbitrary types of fields, 
bosons, and fermions. 

In Sec. 2 we collect our main results (theorems 1-3), 
together with definitions of notations necessary for the 
statement of our results. In Sec. 3, the properties of 
generalized fJ functions are studied and they are applied 
in Secs. 4-6 for the proof of our main results. 

In Sec. 7 we make a few remarks about the class of 
functions for which our results hold. If the behavior of 
Wightman functions for large energy momentum is not 
sufficiently good, we have been unable to obtain our 
full results. As for the behavior at large coordinate 
separation, the truncated Wightman functions are 
expected to tend to zero in contrast to the Wightman 
functions themselves. Hence the truncated functions 
are used extensively in this work and their properties 
are studied in Appendix B. 

The spectrum condition assumed in the main text is 
the existence of a single lowest positive mass. The case 
of more general mass spectrum conditions is treated in 
Appendix A. We obtain two-term identities for mo­
mentum below threshold and the corresponding ana­
lyticity. However, the sufficiency of this condition has 

4 O. Steinmann, Helv. Phys. Acta 33, 257 (1960). 
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not been fully established for a general mass spectrum 
condition. 

In Appendix C, we collect definitions and known 
results concerning convex polyhedral cones which are 
extensively used in the main text. 

2. NOTATIONS AND MAIN RESULTS 

In this paper, we consider the quantum theory of 
several covariant fields A,(x) satisfying (1) the in­
variance under the inhomogeneous Lorentz group, (2) 
the local commutativity or anticommutativity, and 
(3) spectrum conditions. As spectrum conditions, we 
assume (3a) the existence of the vacuum (the nonde­
generate invariant state), (3b) the positiveness of 
energy, and (3c) the existence of a lowest positive 
mass m. In Appendix A, we treat the case where (3c) 
is replaced by more complicated mass spectrum con­
ditions. 

These conditions can be used in a most compact wayS 
for the truncated vacuum expectation values, as we 
shall see in the following. The Wightman functions are 
denoted by 

wp(x) = up C'I'o,A p (1) (xP(1)' .. AP(n+1) (Xp (n+1»'lr0), (2.1) 

where P denotes the permutation of 1· .. (n+ 1), up is 
the signature of the permutation of anticommuting 
:fields,6 and 

(2.2) 

Throughout this paper we shall take x. as the argument 
of the field Ai. The truncated Wightman functions are 
defined recursively by7 

('lro,A it (XiI)' •• Aim(Xim)'Ir 0) 

= [A i1 (XiI)' •• A im(Xim ) JT 
+:2::u[A il (XiI) ••• JT[Aik(Xik)' .. JT' . " (2.3) 

WpT (X) = UP[Ap(l) (Xp(l» ... A p(n+ll (XPCn+l» JT, (2.4) 

where the summation extends over all grouping of 
points Xl' .. Xm, the A's in each [ JT of Eq. (2.3) are in 
the same order as on the left-hand side, u is the signature 
of the permuation of anticommuting fields which brings 
Ail' .. Aim to the order of the A in that term, and Up 
is as in Eq. (2.1). The purpose of this definition is to 
subtract from the Wightman functions in a symmetric 
manner the contributions from the vacuum intermediate 
states. 

6 The mass spectrum condition for Wightman function is stated 
in ry.I2") of Appendix B. It is more complicated because of the 
presence of the vacuum intermediate state. Also see discussion of 
Sec. 7. 

6 It is meant that up is the sign change which one obtains if one 
changes the order of the fields from the natural order 1, 2, ., ·n+1 
to (the order) P(l), P(2), .. ·P(n+1) for totally spacelike con­
figuration of Xi. See Appendix B. 

7 R. Haag, Phys. Rev. 112, 669 (1958). See also Appendix B 
for more detail. Equation (2.3) corresponds to Ursell's expansion 
in statistical mechanics. H. P. Ursell, Proc. Cambridge Phil. Soc. 
23, 685 (1927). 

Because of the translational invariance of the theory, 
X can be taken modulo (1,.· ·,1). The 4n-dimensional 
vector space formed by X modulo (1"" ,1) is denoted 
byX. 

The Fourier transform of a Wightman function is 
denoted by 

(2.5) 

where 
n+l 

(q,x)= L (q.,Xi), (2.6) 
i-I 

and (qi,Xi) is the conventional inner product in 
Minkowski space.8 The 4n-dimensional vector space 
formed by 

(2.7) 

such that :2::qi=O is denoted by Q. The wp(q) are func­
tions of q in Q. 

The WpT(q) are defined in a similar manner, namely, 

WpT(q) = !ei(q.X)wPT(X)dX, qEQ (2.8) 

WpT(X) = (211")--4n J e-i(q,X)wpT(q)dq, xEX, (2.9) 

where dx and dq are the volume elements of X and Q, 

dx=dxl" ·dxn , dq=fJ(:2::qMq1" ·dqn+l' (2.10) 

In order to control the combinatorical difficulties for 
large n, it is essential to introduce a compact, though 
somewhat involved notation. A set of integers is 
generally denoted by I, in particular the set {I" .. ,n+ I} 
by I(n+ 1) and 

{P(l)," ·P(k)}=I(P,k). (2.11) 

The set (of sets) {I(P,k); k= 1, .. ·n} will be called !1p. 
We define 

q(I)= L qv. (2.12) 
vEl 

Note that 

q[I(n+1)J=0, q[I(n+1)-IJ= -q(I). (2.13) 

The energy momentum vectors of intermediate states 
in the Wightman function Wp are q(I), with IE!1p. 

The properties of WpT which follow from the assump­
tions (1)-(3) on the theory are (see Appendix B): 

(W1) The WpT(X) are covariant functions of xEX. 
(W2) If pI results from P by the interchange of the 

indices P(k) and P(k+1), and if Xp(k)-Xp(k+l) is 
spacelike, then WpT(X) = Wp,T(X). 

(W3) WpT(q)=O unless q(I)9m, qO(I»O for all 
IE!1p. 

8 The signature of the metric is (1, -1, -1, -1). 
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We now turn to the main subject of the paper, the 
analytic function in momentum space. This function 
will be defined by Eq. (2.27) or in explicitly covariant 
form by Eq. (2.39). To show the equivalence of this 
definition with conventional usuage, let us start from 
the customary definition of a retarded function for Bose 
fields: 

r(XI; X2" 'Xn+l) 
= (_i)n~O(XI0-XP(2)O) . . ·O(XP(n)o-XP(n+l)O) 

X (wo,[' .. [[A 1 (XI),Ap(2) (xp(2»],Ap(3) (Xp(3»}' . 
XA p(n+l) (XP(n+l)]Wo), (2.14) 

where the summation is over all permutations P of 
2, "', n+ 1. On expanding the multiple commutators, 
this can be written as9 

;-1 
=I:(-1)f-1(-i)n I: II O(Xp'( ..... l)O-XP'(.)O) 

j P' (i) -1 .-1 

.. +1 
X II O(XP'(.)O-Xp'( ...... I)O)WP' (X). (2.15) 

II=-i 

Because the time components appear explicitly in Eq. 
(2.15), we consider the n-dimensional vector space T 
formed by the time component of xEX, 

and the n-dimensional vector space S formed by the 
energy component of qEQ. We use the following inner 
products: 

n+l n+l 

q'l= I: qili, S'X= I: SiXi, (2.17) 
i-I i-I 

n+l 
s·t= I: Sit; 

i-I 
(2.18) 

where xEX, qEQ, tET, and sES. The inner products 
in Eq. (2.17) are Minkowski vectors while the inner 
product in Eq. (2.18) is a number. The space Q is the 
dual of X relative to the inner product (2.6), and S is 
the dual of T relative to the inner product in Eq. (2.18). 
The complex vector spaces corresponding to X, Q, T, 
and S are denoted by Z, Z', U, and V, respectively. 
Equations (2.6), (2.17), and (2.18) are used also for 
these spaces. 

9 To prove Eq. (2.15), we note that the vacuum expectation 
value of the multiple commutator for each P in Eq. (2.14) 
contains a fixed wp.(x) in Eq. (2.15), if, and only if, 

P-1P'(1) >P-IP'(2) > ... >P-IP'(j-1), 
P-IP'(j+1) < ... <P-IP'(n+1). 

Since (j-1) A's always come to the left of A 1(Xl), the wp.(x) in 
all these terms have a common sign (_1)i-1• Summing up 9 
functions over all P satisfying the previous equation, we get Eq. 
(2.15). 

If we define t (1) by 

t(I).= 1 if vEl 

=0 ifvEEI, (3.19) 

the q(I) can be written as q' t(I). In a similar manner, 
we define 

S(ij).=Oi.- O;., (2.20) 

which will be used to express Xi-X; as s(ij) ·x. By using 
the notation of Eq. (2.19), we can write the Fourier­
Laplace transform of r as 

f(v,q) =;: f dfwp(q)(27r)-n 

X II [(v-f)·t(I)]-I. (2.21) 
IEIJ(P) 

Here df is defined in an analogous way to dq in Eq. 
(2.10). The Wp in Eqs. (2.15) and (2.21) can be replaced 
with the WpT as will be seen in Appendix B. Because of 
(W3), f(v,q) is analytic everywhere except at the cuts 

1m v·t(I)=O, Re v·t(I) ~ (m2+[q·t(I)J2}i. (2.22) 

If we fix the sign of every 1m v·t(I), and let 1m v tend 
to zero, then r(v,q) approaches to one boundary value. 
Geometrically speaking, the family Hn-1I1 of hyper­
planes (in the space S of 1m v) defined by 

Hn--1 R = (h(I) :ICI(n+1)}, 

h(I) = {s; s·t(I)=O} 
(2.23) 

divides the entire space S into several convex polyhedral 
cones which we shall call C i • If 1m v stays in the 
interior of one cone C i, then the sign of 1m V· t(I) stays 
constant, while if it moves from one cone to another 
the sign of some 1m v·t(I) changes. Thus as 1m v tends 
to zero from inside each cone C;, f(v,q) approaches to 
one of its boundary values which we shall call ri(q). 
The ri(q) exhaust all boundary values of f(v,q). In 
particular, we obtain the Fourier transform of the 
retarded function (2.15) as the boundary value corre­
sponding to the cone 1m v·t(I) ~ 0 for 1= {2}, {3}, ... 
X {n+ 1}, i.e., for 1m Vi::::; 0 for i= 2, .. " n+ 1. 

We shall use the generalized 0 function 

O(t:c)= 1 iftEC 
=0 if tEEC 

(2.24) 

If C is a pointed convex polyhedral cone/o the Fourier­
Laplace transform of 0, 

0('0; C) = f eiv .IO(t; C)dt, (2.25) 

is a rational function of v. Its boundary value (con­
sidered as a distribution), as 1m v tends to zero from 
within a cone C' of the space of 1m v, is denoted by 

10 For the definition, see Appendix C. 
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O(s; CIC') and its inverse Fourier transform is denoted 
by OCt; CIC'). If C' is the positive polar1o of C, then 
O(t; C IC') is equal to O(t; C). Similar definitions hold for 
O(s; C), O(u; C), O(t; CIC'), andO(s; CIC'). The proper­
ties of these functions will be studied in Sec. 3. 

As an example, let us consider the cones CP in T 
defined by 

CP={XO;XP(1)O~XP(2)O~ ... ~XP(n+I)O}. (2.26) 

Then Eq. (2.20), with wp replaced by WpT, can be 
written as 

r(v,q) = LP f dqOiiJpT(q)O(V-qo; Cp)(211"i)-n. (2.27) 

We remark that although the starting Eq. (2.14) 
referred to the Bose case, Eq. (2.27) is the appropriate 
definition of the retarded function for an arbitrary 
collection of local Bose and Fermi fields, i.e., theorems 
1 and 2 following are true always. 

Our first main theorem lists the necessary and suf­
ficient condition for the 'i to be obtainable from the 
WpT satisfying (Wl)-(W3). 

Theorem l,u If WpT(X) satisfies (WI)-(W3), then 
'i(X) defined by 

(2.28) 

satisfies 

(RI) 'i(X) is a covariant function of xEX. 

(R2) ,;(x)=O, if xOEEC+. (C+ is the positive polar lO 

of C.) 

(R3) ri(q)=rj(q), if dim[CnCjnh(I)]=n- Jl2 and 
q(I)2<m2. 

(R4) ,++(x)-,+_(x)-,_+(x)+, __ (x)=O, if 

dim[C++nC+_nC+nC_nh(I)nh(I')]=n-2,12 

crlncr'I' ¢empty, C~~'CC[t(I)]~nC[t(I')Y 
(cr, cr' = + Or - ). 

Conversely, if ,;(x) satisfies (Rl)-(R4), then WpT(X) , 
defined by 

(2.29) 

satisfies (WI)-(W3), and the original 'i(X) is given by 
Eq. (2.28) in terms of this WpT. 

Rema,ks. (1) Note that the conditions (R1), (R2), 
and (R3) in this theorem are almost dual to the condi­
tions . (WI), (W3), and (W2). In fact, (W2) can be 
rewritten in our notation as (W2') WpT(X) = Wp,T(X), if 

11 To be precise, we have to specify the class of distributions to 
which wp(x) and y;(x) belong. The point is that a product like 
O(Xj Cp!C,)wp(x) or O(qj C';CP)Yi(q) has to be well defined and 
the integral over dt/' or d:xfl has to be convergent. In this paper 
we do not attempt any thorough discussion of this point, although 
we shall make a few remarks in Sec. 7. See also footnote 16. 

12 This means Ci and C; are neighboring cones with their common 
(n-l)-facet lying on h(I). The cones in (R4) will be explained. 

dim[CpnCp,nh(ij)]=n-JI3 and if [s(ij)·XJ2<0, 
where h(ij) is the hyperplane orthogonal to s(ij). 

(2) The support condition in x space, (R2), expresses 
the retardedness in certain variables. Namely, if we 
denote the l-facetslO of Ci by C(s/') , then (R2) is 
equivalent to (R2') ,.(x)=O, unless s/'·xEV+ (the 
future light cone) for all X. Actually, 'i has in general 
more retardedness than (R2'), which, however, invari­
ably contains alternative statements. This retardedness 
is, of course, implied by (R1)-(R4), but is not immedi­
ately apparenU4 

(3) The condition (R4) has been first noted by Stein­
mann4 for the four-point function (n=3). The inter­
section of two (n-1)-planeslO h(I) and h(I') (I ¢I') 
is a (n- 2)-plane.10 This intersection is not contained 
in any other h(I"), if, and only if, ±I and ±I' has 
nonempty intersection for any combination of the signs 
where we have denoted I(n+I)-I by -I. If this is 
the case, the (n- 2)-plane h(I)nh(I') is divided into 
several polyhedral convex cones by h(I") (I" ~I, I') 
and corresponding to each of these cones, there are 
exactly four cones Ci which have that cone as a (n- 2)­
facetlO and which are on different sides of (n-I)-planes 
h(I) and h(I'). The condition (R4) gives a linear 
relation among the corresponding four , i which are 
denoted by,~~, (cr,cr'=+ or -). 

Our second main task is to convert conditions (RI)­
(R4) on 'i to a condition on the domain of analyticity 
of the analytic function in p space. We have succeeded 
in this only for (R1)-(R3). 

To state our result, we need further definitions. We 
define open convex cones V iQ in Q by 

(2.30) 

where V + is the interior of the future light cone and di 
is the set of ICI (n+ 1) such that C[t(I)], IE g; con­
stitute the one-facets of C+. [The h(I), IEdi are 
boundary planes of C.] If C; and C j are neighboring 
cones across the (n-I)-plane h(Io), namely, 

dim[CnCjnh(Io)]= n-l, 

the interior of the set (ViQnVjQ) is denoted by SQ(ij): 

SQ(ij) = {q; q·t(Io)=O, q·t(I)EV+ for lEg; or gj 

and I¢Io}. (2.31) 

The tube T(ViQ) is the subset of Z' defined by 

(2.32) 

The extended tube T'(ViQ) is the union of images of 
T(ViQ) under all complex proper Lorentz transforma-

13 Cp and Cp' are neighboring cones with their common (n-l)­
facet lying on h(ij). 

14 For example, take r12(xI·· . x,) for the fourfold case. (See 
H. Araki and N. Burgoyne, footnote 3.) This vanishes unless Xl 
is advanced over x. and x, and X2 is advanced over either x. or x,. 
(R2) says that it vanishes unless (Xl-X.), (Xl-X,), and 
(XI+X2-X.-x,)EV+. Of course, the latter and (R4) imply the 
former. 
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tions. The corresponding definitions in X are 

VpX= {xEX; s[P(k), P(k+1)}xEV_, 
k= 1, "', n}, (2.33) 

S(P,k) = {xEX; s[P(k), P(k+1)}x=0, 
s[P(m), P(m+1)}xEV _ for m¢k} (2.34) 

T(VpX)={zEZ; 1mzEVpX}. (2.35) 

If the two cones Cp and Cpo are neighboring, namely, if 
P(i)=P'(i) for i¢k, k+1 and P(k)=P'(k+1), 
P(k+1)=P'(k), then 

S(P,k)=S(P',k)=the interior of -Vpxn-Vp,x. (2.36) 

We are now ready to state our second main theorem. 
Theorem 2. The ri(q) satisfying (R1)-(R3) are 

boundary values of one analytic function r(n as t 
tends to q from inside the tube T(V,Q). ret) is analytic 
in the union of T'(V,Q) for all possible i and in the sets 

~(ij,m)={tEZ' j1mtESQ(ij), [Ret· t(I)]2<m2} (2.37) 

for all i, j, I, such that C i and C j is neighboring across 
k(f). r(r) is analytic at a real point r= q, if all q(I)2 
are smaller than m2• Conversely, if ret) is analytic in 
this region and has a certain boundedness property,ls 
then its boundary values ri(q) satisfy (R2) and (R3). 

This will be proved in Sec. 6. For the sake of com­
parison, we mention the corresponding theorem for WpT. 

Theorem 3. The WpT(X) satisfying (W1)-(W3) are 
boundary values of one analytic function wT(z) as z 
tends to x from inside the tube T(V pX). wT(z) is ana­
lytic in the union of T'(V pX) for all possible P and in 
the sets 

~(P,k)= {zEZ jIm zES(P,k), 
(Res[P(k), P(k+1)]'Z)2<0}, (2.38) 

wT(z) is analytic at a real point z=~, if all s(ij)·x are 
spacelike. Conversely, if wT(z) is analytic in the above 
region and satisfies a certain boundedness condition,15 
then its boundaryvalueswpT(x) satisfy (W2) and (W3). 

Covariant formulas which express r(n and w(z) in 
terms of boundary values of the other are given by 

r(t) = (-i)n La Lv faxei(i.:Z;)O(il; Ca.X/lm r) 

XO(x; LlaX)wa.T(x), (2.39) 

wT(z) = (i)n LP L. J dqe-i(q.z)O(tf; Cp.Q/1m ZO) 

XO[q; .6pQ(m)]rP.(q). (2.40) 

Here Llax and LlpQ(m) designate various regions in X 
or Q where w(z) or r(n have different number of 
boundary values. Namely, we divide the space X into 

Ii Compare L. Schwartz, Medd. Lunds Mat. Sem. SuppI. 196 
(1952). 

several Lla:Z; according to whether each s (ij) . x is space­
or timelike and the different regions are distinguished 
by subscript a. A similar definition holds for .6/lQ (m): 

Llax = {xEX; CTa(ij)[s(ij) 'X]2>0}, (2.41) 

Ll/lQ(m)= {qEQ; CTp(1)[(q·t(I)L m2]>0}, (2.42) 

where CT a and CTp are + or -. For each region .6"x­
vectors [s(kl)·x] with CTa(kl»O can be either positive 
or negative timelike. To distinguish such possibilities, 
we use the cones C •• x in T which are defined by 

Ca.X={tET; [s(kl)·t]CTa.Ckl»O 
for all k, l such that CTa(kl»O}, (2.43) 

where as v varies CT a.(kl) exhaust all possibilities for con­
sistent assignments of signs to s(kl)· t. For example, if 
all CT,,(kl»O, then {Ca.} coincides with {Cpl. In 
general, C". is a union of several Cpo C/lQ are similarly 
defined and coincides with {Co}, if O"p(1»O for all I. 
The summation over a in Eq. (2.39) extends over a 
such that the C" are pointed. [In other words, if the 
s(kl) for which CT,,(kl) >0 span S.] For each a, the sum­
mation over v extends over all possibilities. Similar 
prescription applies for the summations in Eq. (2.40). 
8(il; C",.'''j1m to) is the O(xO; C"z/C') where C' is deter­
mined by ImrEC'. It is invariant if xE.6"x and all 
Imr·t(1) are time- or lightlike. ()(tf;C{3.Q/ImzO) is 
similarly defined. 

WaT is the WpT with P such that CpCc, .. x. Owing 
to (W2), if xE.6"x, then the WpT(X) are all equal for 
different P as long as Cp stays in one C"x, rfJv is the r. 
with i such that CiCC/l.Q. 

Finally, \"e note that the vacuum expectation value 
of time ordeled product, rex), and its Fourier transform 
r(q) can be expressed as 

rex) = lim w(z), 
z-x. 1m ZEVT(X) 

r(q) = lim inr(r) 
,-+q.1mfEVT(q) 

where V T and V T are defined by 

VT(x)=Vpx, ifilECp; 

VT(q) = V.Q, if tfEC;. 

(2.44) 

(2.45) 

(2.46) 

3. PROPERTIES OF GENERALIZED 6 FUNCTION 

First let us consider the generalized 0 function defined 
by Eq. (2.24) for the special case of a simplex cone c.lO 

Suppose 1-facets of C and c+ are h" ·t" and Sl" ·s" 
where s,·tj=Oij, [det(t,)~O]. Then we have 

.. 
OCt; C)= II O(sc t), (3.1) 

i-I 

.. 
O(VjC)=i"ldet(ti)1 II (V·t.)-I. (3.2) .-1 
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If we define associated simplex cones uC by 

uC = C (Ultl ... U ntn), 

where the Ui are ± 1, then, we have the formulas 

n 

(3.3) 

O(v; uC)= (II Ui)O(V; C), (3.4) 
i=l 

n 

O(t; CluC+) = (II Ui)O(t; crC).16 (3.5) 
i=l 

We note that the poles of O(v;C) appear at V·ti=O, 
i= 1· .. n and the discontinuity of O(t i CluC+) appears 
ats;-t=0,i=1···n. 

We now turn to the case of general convex polyhedral 
cones C. 

Lemma 1. Let C be a pointed polyhedral convex 
cone. lO The integral in Eq. (2.25) defines an analytic 
function of v in the tube T(C+) = {v; 1m vEinterior of 
C+} (which is nonempty). The analytic function is a 
rational function with simple poles at v·t=O, for 
fEFl(C) (the set of all 1-facets of C). 

Lemma 2. (Addition theorem.) Let C and C, be 
convex polyhedral cones such that C is the union of Ca 

and the C a are mutually almost disjoint [C=Ua C a , 

dim(CanCf3)<n fora.,ei3]. Then 

'£a8(v;Ca)=O(v;C) iflinC=O (3.6) 

=0 if linC.,eO linCa=O (3.7) 

LaO(u;Ca+)=O(u;C+) ifdimC+=n (3.8) 

=0 if dim Ca+=n 
and dim C+.,en. (3.9) 

For the proof, we first note that if vET(C+), then 
1m V· t> ° for IEC and as I -> C7J within C, the integrand 
of Eq. (2.25) tends to zero exponentially. Hence it 
defines an analytic function of v. Next, we obviously 
have 

O(t i C) = La O(t; Ca) almost everywhere. (3.10) 

Because Ca+~C+ and C+ is nonempty, the integral 
representation Eq. (2.25) can be applied to all O(v; CQ ) 

and O(v i C), if vE T(C+). Hence we obtain Eq. (3.6) 
from Eq. (3.10) as a relation between analyticfunctions. 
To prove that O(Vi C) is rational, we invoke the sim­
plexial decomposition of C : C = U aC ", We already know 
that, for simplex cones Ca , O(v; C,,) is rational. Hence 
O(v i C) is also rational by Eq. (3.6). Moreover, because 
Fl(Ca)CFl(C) for standard simplexial decomposition 
and the latter is possible, if lin C=O,17 we see that the 
singularities of (j(v; C) occur only at v·t=O, tEFl(C). 

To prove Eq. (3.7), we first consider a special case 

16 Note that o(t; C/uC+) is defined only almost everywhere. 
Equation (3.5) should be taken in this sense. The product like 
O(t)w(t) is meaningful only when wet) belongs to a certain class of 
distribution. See L. Schwartz, Seminaire Schwartz-Levy, No.3, 
Faculte des Sciences de Paris, 1956-57. 

17 Compare lemma C2 in Appendix C. 

where C= U"C", C,,=C(Ultl' . 'umtm,tm+l' .. in), dim C" 
= n, and U i= ± 1. Since C" is simplex, we easily obtain 
Eq. (3.7) from Eq. (3.4). By using this result, we make 
generalizations in two steps. First consider the case 
where C=U"C, C,,=C(ToUT,,), dimC(To)=n-m, 
linC(To)=O, T,,={UliI···umtm }, ui=±1 and dimC" 
= n. We make a simplexial decomposition of C(To) in 
h(To): C(To)= Uf3C(Tf3)' On setting C{3,,=C(T,gUT,,) 
and Cfj= U"Cf3", and using Eq. (3.6) for C= U,gC,g" 
and Eq. (3.7) for Cf3= U"C,g", we have ~"O(v; C,,) 
=~(3[~,,{j(Vi C{3")]=O. Finally, for the most general 
case, let C= UaCa, lin C=m, L(C)=h(~)\ and 
~={Sl" ,sm}. Let ~,,={UlSl" .umSm }, C,,=C(~,,)+nC) 
and C""=C"nC,,. Since lin C,,=O by construction, we 
have O(Vi C)=~QO(v; C",,) as a result of Eq. (3.6). 
Since linCa=O 'by assumption, we have O(ViC,,) 
=~.O(v; C",,). By Eq. (3.7) for the previously proved 
case, we have ~O(v; C,,)=O. On combining these, we 
obtain Eq. (3.7) for the most general case. 

Equations (3.8) and (3.9) can be proved at the same 
time. [If dimC.,en, O(u;C)=O.] First, consider a 
special case where C=C1UC2, Cl=CnC(-s)+, C2 

=CnC(s)+, and s, -sEEC+. The (n-1)-planes in 
H n _ 1(C+)18 divide Cl+ and C2+ into several convex 
cones. Let this decomposition be Cl+=C+U(UaCa+) 
and C2+=C+U (U,gCf3+). SinceC1+ and C 2+ are pointed, 
we have from Eq. (3.6) O(U;Cl+)= (j(u;C+)+~O(U;Ca+) 
and O(u; C2+)=O(u; C+)+~O(Ui Cf3+). Since Cl+UC2+ 
is not pointed, we have from Eq. (3.7) O(UiC+) 
+~(j(u;C,,+)+~O(u;Cf3+)=O. Hence we obtain Eqs. 
(3.8) and (3.9) for this case. Next, consider the case 
where C is cut into several C" by a family of planes 
h(s)\ sESo. By applying the previous result, every 
time one cuts C by a h(s)J., one obtains Eq. (3.8) or 
(3.9) for C= UC,. Finally, consider the most general 
case C= uCa. The (n-1) planes in U"Hn-l(Ca) cut 
C and C" into several convex cones. Let this decom­
position beC,,= U,C"i and C= U".Cai. Then by apply­
ing the previous result for C" and C, we obtain Eqs. 
(3.8) and (3.9). This completes the proof of lemmas 1 
and 2. 

Next we investigate the residue of (j at its pole. We 
define 

R(v; Cit) = lim v' ·to(v'; C), V· t=O (3.11) 

v·ti=O, i=1·· ·m. (3.12) 
Lemma 3. 

n 

R(v;C/t1 • .. tn)=in!det(fi)! II e(Cm-l;jm), (3.14) 
m=l 

18 Fm(C) is the set of all m-facets of C and Hm(C) is the set of 
dimensionality spaces of all m-facets of C: 

Hm(C) = {h(j); fEFm(C)}. 
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where 

Cm=C+h(tl" ·t ... ), Co=C, j ... =C(t ... )+h(tt··· tm-l)' 

e(C;j)= 1 if jEF", (C)18 for some m 
=-1 if -jEFm(C) for some m, (3.15) 
= otherwise, 

81 is the 8 where the space T mod h(lt) is used instead 
of T and h(tl)J. instead of V. The volume element of 
T mod h(tl ) in the definition of 8t is so chosen that, if 
tt, t{··· tn' span a parallelepiped of unit volume, 
t2' ... tn' span the same in T mod h (it). 

To prove Eq. (3.13), we note that R(v; C/tl) is a 
rational function of v in h(tll in V. We can calculate 
Rby 

- 2'1riC(v· t1)R(v; C/t1) 

=lim[8(v+iE; C)-U(v-ie; C)] (3.16) 
• _0 

where 1m '0'/1=0 and E·tl>O. From lemma 1, We have 

R(v; C/it) =0, unless it or -tlEF1(C). (3.17) 

Suppose C(C1tl)EFt(C)(C1= ±). Because of Eq. (3.17) 
and the addition theorem (3.6), we can adjoint to C 
or cut off from C any convex cones whose I-facets do 
not contain ±tl without changing R(v; C/t1)' By this 
process, we can shift all (n-1)-facets of C not contain­
ing ±tl, to one facet j. Suppose j los and s· tl >0. 
On denoting 

we have 
R(v; C/tl)=R(v; C'/tt). 

On the other hand, we know from Eq. (3.7) that 

8(v-iC1E; C/) = - (j(V-iC1E; CIf). 

From these we obtain 

- 21fi~(v' t1)R(v; Cjtl) 

=limC1[{j(v+iuE; C')+U(V-iC1E; CIf)]. (3.18) 
.....0 

Since R is rational function, we can easily find an open 
set 19 (relative to h(tl)J.) in domain of analyticity of R 
and E satisfying E·t1>0, such that uE+lmvEC' and 
-UE+Im vEC"+ when vE19. We can use the integral 
representation for both (j in Eq. (3.18) for such v and E, 

and we obtain 

- 27ri~(v· tl)R(v; C/tt) = f eiv.t(J(t; C1)dt. 

Thus Eq. (3.13) is true for vE19. Since both sides of 
Eq. (3.13) are rational, it holds everywhere. 

By repeated application of Eq. (3.13), we obtain 

11 

[IT 21f~(s·tm)JR(v; C/tt· .. tn ) 
",-1 

which implies Eq. (3.14). This completes the proof of 
lemma 3. 

We now discuss the boundary values of 8, 
Lemma 4. The boundary value of (j 

8(s;C/s')= lim 8(s+iks';C) (3.19) 
k->+O 

is the same for all Sf in the interior of anyone cone C' 
of r[Hn_ 1(C+)].19 

This is obvious if one recalls that tJ(v; C) is rational 
and its poles appear only when 1m v is on one of 
planes in Hn-l(C+) = HI (C)J. . 

This justifies the notation U(s; C/C') instead of 
8(s;C/s'), as long as C' is a cone of r[Hn_I(C+)] or 
contained in such a cone. 

Lemma 5. The Fourier transform of 8(s; CIC') , 

(J(t; C/C') = fe-iH(J(S; CIC')ds(21f)-n (3.20) 

is a function taking integral values (almost everywhere) 
and with discontinuities only at planes belonging to 
Hn_1(C). Furthermore, 

(J(t; C/C') =0 if tE\:C'+ (3.21) 

(J(t; C/s')=O if IE interior of C and s'E\:C+. (3.22) 

To prove the first part of the lemma, we note that 
this is true for simplex C [ef. Eq. (3.5)]. For arbitrary 
C, we see by a simplexial decomposition C=~Ca, th~t 
discontinuities occur on (n-l)-planes. Furthermore, If 
a (n-l)-plane hEEHn-I(C), then by lemma C2, we 
can make this decomposition in such a way that 
hE\:Hn-l(C,,) for any a. Hence discontinuities occur 
only on planes of Hn-l(C), 

To prove Eq. (3.21),20 we note that if tEEC'+ then 
there is a sIEC' such that Sl' t<O. On using a basis 
sl"'s"inS, 

Since U is analytic for 1m P1>0 with fixed real Ph j ~ 2, 
we have Eq. (3.21) by contour deformation in the PI 
integration. 

l'r(H) is the set of all convex polyhedral cones obtained by 
division of the whole space by (n-l) planes belonging to H. See 
Appendix C. 

20 Another proof can be obtained by using a standard simplexial 
decomposition of C: C= UC". Then 8(t; CIC)=T.afJ(tj CalC'). 
Since F1(Ca)CFI(C) and C'Er(HI(C)J.). C' is contained in one 
of fTCa + [defined by Eq. (3.3)]. By Eq. (3.5), if tEfC'+::)fTCa, 
then 8(tj CalC) =8(1; CalfTC" +) =0. 
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To prove Eq. (3.22), we make a simplexial decom­
position of C+: 0=UCa +. Obviously s'E/:Ca +. Since 
U(v; C)=~U(v; C"'), because of Eq. (3.8), we have 
O(t; CIs')=~O(t; Cals'). If s' happens to be on some 
plane of Hn-l(Ca+), there is always another s" near s' 
which is not on any plane of Hn-l(Ca+) nor in 0 and 
satisfies O(t;CIs')=O(t;CIs"). [S'E/:Hn-l(0).] For 
simplex Ca, we see from Eq. (3.5) that O(t; Ca/S') =0, if 
tECCCa and s"E/:Ca +. Hence we have Eq. (3.22). 

Finally we prove the following inversion formula. 
Lemma 6. If dim C=n, lin: C=O, and H-:)Hn-l(C+), 

then 
L U(v;C')O(t; C/C')=O(v; 0). (3.23) 

C'Er(H) 

To prove this, we first consider the case where C is 
simplex. Since HCHn-l(C+), each C'Er(H) is con­
tained in some C,,+. By lemma 4, Eqs. (3.6), (3.4), and 
(3.5), we obtain 

LU(V;C')O(t;C/C')=L[ L U(v;C')O(t;C/Cq+)] 
c' q C'cc.+ 

= L U(v; C,,+)O(t; C/C,,+) 
q 

= L U(v; 0)0(t; C,,) = O(v; C+). 

For general C, we make a standard simplexial decom­
position C= UaCa. Since Hn-l (Ca+)CHn-l (C+) , we 
can use Eq. (3.23) for every Ca. Hence by using Eqs. 
(3.6) and (3.8), we obtain Eq. (3.23) for the general 
case. 

4. NECESSITY PROOF OF THEOREM 1 

To prove (Rl), we rewrite definition (2.28) in a 
form similar to Eq. (2.39). Namely, using the notation 
(2.41)-(2.43), we see that Ca.x is sum of several Cpo 
Moreover, because of (W2), if xE~ax, then the wp(x) 
are equal for various P, as far as Cp stays in one Cax. 
Hence using Eq. (3.6), we obtain 

O(xfJ; Ca.x /C;) is invariant, as long as xE~ax because 
its discontinuity occurs only at s(kl)· xo= 0 with k, I such 
that [s(kl)·x]2>0; otherwise it stays constant. Since 
wa.T(x) is covariant because of (Wl) for WpT, we have 
(R1). 

(R2) is an obvious consequence of Eq. (3.21). 
To prove (R3), we note that the difference 

U(s;Cp/C;)-U(s;Cp/Cj) for neighboring C. and Cj is 
the boundary value of R[v; Cp/t(I)] multiplied by 
±21ri8(s·t(I» [compare Eq. (3.16)]. Hence, because 
of Eq. (3.13), only terms with those P for which 
±C[t(I)]EFl(Cp) survive and, because of the presence 
of the above 0 function and (W3), WpT vanishes, if 
±q·t(I) is one of its intermediate momentum. (Note 
that [q(I)]2<m2.) Since ±C[t(I)]EF1(Cp) implies 

that ±q(I) is an intermediate momentum of WpT, we 
have (R3). 

To prove (R4) , we first note that, since I(P,k), 
k = 1· .. n is totally ordered by set inclusion, if 
ulnu'I' ~empty then ±q(I) and ±q(I') cannot be 
intermediate state for one WpT simultaneously. Thus by 
lemma 4 

O(x; Cp/C+",)=O(x; CpIC_",) if ±C[t(I)]EEFI(Cp) 

O(x; Cp/C,,+)=O(x; Cp/C-) if ±C[t(I')]EEFI(Cp). 

Since one of these equalities is true for each Cp , we 
have (R4). 

5. SUFFICmNCY PROOF OF THEOREM 1 

First let us show that if ri is obtained from WpT as 
in Eq. (2.28), then we obtain the WpT by Eq. (2.29). 
Namely, we define 

wT(q/t) = (i)n Li O(qO; C;/t)ri(q). (5.1) 

Then by substituting Eq. (2.28) into Eq. (5.1), we have 

By Eq. (3.23) the summation within brackets is equal 
to O(qO;Cp+/t). [Note that {c;}=r(Hn-IR) and 
Hn-IR=UpHn_I(Cp+)-:)Hn-l(CP+).] We now have 

wT(q/t) = LP O(qO; Cp+/t)WpT(q). 

By (W2) WpT(q)=O, if qO is not in the interior of Cp+. 
If qO belongs to the interior of Cp + and tEECp , then by 
Eqs. (3.22) (J(qO; Cp+/t) =0. If qO is in the interior of Cp+ 
and tECp, then O(qO; Cp+/t)=8(qO; Cp+) = 1. Thus we 
have 

iiJT(q/t) = WpT(q) if tECp. (5.2) 

We now assume (Rl)-(R4) for ri(x) and define 

(5.4) 

We denote UiHI(Ci)~=UiHn-I(C;+) by Hn_IRW and 
UpHn-I(CP) by Hn_lw. We easily see that Hn_1w 
CHn-IRWand in fact Hn-IRW is much larger set than 
H n-l W in general. 

If we denote the cones in r(Hn-IRW) by CP'Y' where 
Cp=U'YCP'Y and the wT(x/t) with t in the interior of 
CP'Y by WP'YT(x), then by lemma 4, Wp'YT(X) is inde­
pendent of the choice of t in CP'Y. However, it depends 
on 'Y in general. 

By lemma 1, WT(U,X) has singularities for 1m uEh 
CHn-IRW in general. Hence, in order to be able to 
define WpT from wT(u,x), we have to show that the 
jump across the cut on 1m uEh for WT(U,X) vanishes, 
if hEHn-IRW and h$.Hn-1 w. [The WT(U,X) constructed 
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from'i of the form (2.28) is regular there.] This follows 
from (R4) in the following way. 

By Eq. (3.16), what we have to show is 

~ f R(u-xO; C,ls)c5[s' (u-xO)]r.(x)dxO=O, (5.5) 

for Ims'u=O, h(s)J.EH_l~w and h(s)J.EEH_IW. This 
is equivalent to 

.. 
L n E[(C')m-l;! .. ]r.(x)=O (5.6) 

, .. -1 

for all S2" ·s .. , where (C')m=C.+h .. , ! .. =C(Sm)+hm-l, 
and h .. =h(s,S2· . ·s .. ). The necessity follows from Eq. 
(3.14). For the sufficiency proof, we expand the rational 
function R(u; Cis) into partial fractions first with 
respect to Ul (the first component of u). Each expansion 
coefficient is the residue of R at the pole of that partial 
fraction and is a rational function of u given by some 
R(u; CIS,S2). On repeating this process, we arrive at a 
formula of the type21 

II 

R(u; C.I s)=const ~ IT E[(C .)_1; !m]R(u) 
_1 

where !m and (C)m-l are defined as in lemma 3, the 
summation is over S2' .. s .. and R (u) is a rational function 
of u depending on s, S2' . ·Sn. By substituting this into 
Eq. (5.5) and using Eq. (5.6), we see the sufficiency of 
Eq. (5.5). 

Next we prove Eq. (5.6) from (R4). In Eq. (5.6), if 
hmEEHm(C i ), for all i and for one fixed m, then all E 

vanishes and the equation is satisfied. Hence we now 
assume that hmEH",(C) for some i, namely, that h", 
is a m-dimensional intersection of planes h(II)'" 
h(I n-m). 

We first show that there is one and only one C. for 
a given Um, m=l···n such that 

(5.7) 

where u .. = ± 1. If this is true, then denoting the corre­
sponding r. by r~, we can rewrite Eq. (5.6) as 

LUI" ·Unr~=O. (5.8) 
CTt···cr" 

To prove this statement, we note that each hm is 
divided by planes h(!) not containing hm into several 
(closed) convex polyhedral cones, say CaCm). For each 
C a (m), there· is at least one cone C, for which 
Cnhm=Ca(m). Furthermore, each h.,. is divided by 
hm-I into two sides: hm=hm+Uhm-lUhm-, where 
±smEhm±. For each Ca(m-l) there are just two C{l(m) 

containing Ca(m-I) (in its boundary), one on each side 
of hm- l • Hence by induction we obtain Eq. (5.8). (Note 
that Ca(n) coincides with C •. ) We also see that CaCm) 

11 We are only interested in the coefficients. 

can be characterized by the value Uk, k:::; m. Hence 
we use the notation C(m) (UI' . ·um). 

Next let us investigate hm more closely. If Ia and Ib 
are proper nonempty subsets of I(n+ 1), and if 
UJa~U~b for Ua , Ub=±, then there are five mutually 
exclusive possibilities: (al) IanIb=empty, (a2) laCh, 
(a3) Ia-:Jh, (a4) IaUh=:,I(n+l), or ({3) UJanu~b 
=nonempty for Ua, Ub=±. We now prove that there 
exists integers k and >. (>.<k<n) and the set 
{I. (m) ; P :::; m :::; k} satisfying the conditions: 

.. 
(Al) h .. -m=n h(I/m», .-1 
(A2) I.(m) is a partial sum of I",(m'>, f.J=p .• ·m' where 
m<m', (A3) Ia=I/m) and h=I.(m) satisfy (cd) for 
u,v<k and (al), or ({3) for m= v= k. In the latter case, 
((3) holds for J.I.=>,. 

Suppose I.(m) has been defined for m<M satisfying 
(Al), (A2), and the condition (A3'): l/m) and I.<m) 
fulfil ({3). Then we will construct I,<M) which satisfy 
(Al), (A2), and either (A3) or (A3'). If this can be 
done, then by induction there is some M = k for which 
(A3) is true for the first time or else we find mutually 
disjoint I.(n-I) such that hl=n.h[I.<n-I)]. This latter 
possibility contradicts hl

1(£H n--I w. To construct I. (M), 

let hn-M=hn-M+lnh(I). If r::JI",(M-I), we replace I by 
l' = 1-I", (M-I). After doing this replacement for each f.J, 
I', and I",(M-I) never satisfy (a3) nor (a4). [If M=2, 
(a4) may happen, but then we replace I by - I without 
harming other conditions.] Now if I'Cl",(M-I) (which 
happens only for one f.J), we define I.(M)=I.(M-I) for 
P~J.I., I/M)=I",(M-ll-I', and lM(M)=!' and they will 
satisfy (Al), (A2), and (A3'). Otherwise, we define 
I/M)=I/M-ll and I M(M)=1', and they will satisfy 
(Al), (A2), and (A3) or (A3'). 

We now claim that, for the smallest satisfying 
Ill)-:JhY') , 

(5.9) 

To prove this, we consider an inner point P of 
C(n-k) ( .. , ...... -10) in hn- k. In the neighborhood of P, there 
are no pianes h(!) except those containing h ...... k • We 
define the point 

P(En-k+l'" Em) = P(En-k+I' •• Em-I) + EmSm', (5.10) 

where Sm' = Sm except s' n-1-tJ is chosen to satisfy 
s' n-I+l·t(I/k»=O for f.J~>' and s' n-l+lEhn-l+I+. Ob­
viously, P( En_k+I' •• Em)Ehm. If we choose Em SUC­

cessively smaller enough, and if (sign Em)=Um, then 
P(· .. Em) will be in the relative interior of C(m) (en ...... ). 

We now fix Em SO that the point 

P(p,p')=P(pEn-k+I'" p' En-I+I'" En) (5.11) 

IS m the interior of C(n)( .. ' ..... n) for P=Un-k+I, and 
p'=Un-I+I. We also define C(pp')=Ci , r(pp')=r., if 
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P(pp') IS In the interior of C. We now prove that 
rp+-rp_ is constant in p. This will prove Eq. (5.9). 

For this purpose, we consider the segment 

L+ = {P (p, + 1) ; I p I ~ 1} and L = {P (p, -1); I p I ~ 1} 

and consider the question: Where do L+ and L_ meet 
the boundaries of C i ? Since L+ and L_ are parallel to 
Sn-k+lEhn-k+l, they will never meet planes containing 
hn_k+l, namely, planes h(I) where I is any partial sum 
of I/k-l). On the other hand, if the ~ are sufficiently 
small, L± are near P and will never meet with planes 
not containing hn- k • Thus, the only planes h(I) which 
L± meets are for I =Ik(k)+~I/kl,22 where the summation 
is any partial sum of I/k) such that h(k) and I/k) have 
the property (a1). L+ and L_ may meet more than one 
planes h(I) at one time. In such a case we change the 
choice of ~ slightly and then I/k) will meet only one 
plane at a time. Since Sn_l+l·t(I/k) =0 for !J.~A, and 
!J.=X does not appear in the summation in the definition 
of I, L+ and L_ meet h(!) at the same time. 

For each fixed I, we fix p+ and p- such that P(p~,u') 
is on the same side of h(I) as P(u,u') and sufficiently 
near to h(I). We now prove 

r(p+, +l)-r(p+, -l)=r(p-, +l)-r(p-, -1), 

by proving that r(p+,p')-r(p-,p') is constant in 
p'(lll ~1). 

Let the segment {P(p~,p');IP'I~l} be Lu'. We 
investigate planes h(I') which La' meets. Since the L/ 
are near P, h(I') should contain hn- k • Since La' are 
parallel to Sn-l+l, and since Sn_l+l·t(Il«k»=Ofor!J.~X, 
I cannot be a partial sum of I/kl, !J. ~X. Hence I' = Ix (k) 
+~II< (k), where summation is any partial sum of II< (k) 

with fJ. ~X,k. Suppose P(p~,p'~') is sufficiently near to 
h(I') and on the same side of h(l') as P(p~,u'). Then 
what we would like to prove is 

r(p+,p'+) -r(p-,p'+) = r(p+,p'-) - r(p-,p'-). 

Because I and I' satisfies ({3), this is nothing but (R4). 
Thus we have succeeded in proving that wT(u; x) has 
no cut across the plane 1m s'u=O, unless h(s).LEH n-l W. 

We now prove the properties (W1)-(W3) for wT • 

First (W1) becomes obvious if we write wpTCq) as 

wpT(q)=in~,i1[q; ~,9Q(m)] 

X[~vO(qO; C,9.o!t)r,9v(q)] tECp, (5.12) 

where notations are as in Eq. (2.40) and the proof is 
similar to that of Eq. (4.1). 

To prove (W2) or equivalently (W2'), we calculate 
by lemma 3 the jump of wT (u; x) across the cut 

22 Since h(l) should contain hn_ k , q(l) =0 should be derived· 
from q[I.(k)]=O, 1'= 1· .. k. (Compare lemma C1.) One can easily 
find that I should contain the whole or no part of I (k) for each 
w¢k, and I cannot contain h(k) and I.(k) at the ;ame time if 
they fulfill ((3). Furthermore, since h(l)1'hn - k +, and since 
I/k)=I,,(k-1) for this case, I should contain h(k). Thus we have 
this result. 

1m s'u=O, 

in ~ J R[u-xO; C';S(fJ.v)]S[s(fJ.V)· (u-xO)] 

Xri(x)dxO, 1m s(fJ.v) ·u=o. (5.13) 

If ±s(!J.v) is not a 1 facet of C, then R vanishes. If 
±s~!J.v) is a 1 facet of Ci, and if [Re s(!J.v) 'XJ2<O, ri(x) 
vamshes because of (R2'). Thus Eq. (5.13) vanishes, if 
[Res(J.!v)·z]2<O,whichproves (W2). (zo=u,z=x.) 

To prove (W3), we first note that if q°E!:Cp +, then 
fE!:Cp.y+ for at least one 1', and, therefore, WpT(q) 
=wp·l(q) vanishes because each O(qO; C';CP'Y) vanishes 
as a result of Eq. (3.21). Suppose fECp+ and 
(q·t(I»2<m2 for at least one IEfJp. We will prove 
WpT(q) =0 for this case by using the following lemma. 

Lemma 7. If [q·t(I)]2<m2 for one IEfJp and 
~,9Q(m) contains q, then each cone C,9vQ contains points 
outside of Cp +. 

If this lemma is true, then for any point fECp+ 
there is a point qO' outside the cone Cp + which can be 
connected with f by a continuous line without crossing 
boundary planes of any C,9vQ. For such a if', 

O(qO; C,9vQ/CP'Y)=O(qO'; C,9vQ/Cp'Y) 

by lemma 4. Since O(qO'; C,9vQ/Cp'Y) is a sum of 
O(f'; Ci/CP'Y) by Eq. (3.6), and the latter vanishes, 
we have WpT(q)=O. 

To prove lemma 7, it suffices to prove that if 
q(I)2<m2 for at least one IEfJp and a polyhedral 
convex cone 

C= n C[t(I')]+ 
I'EiJ 

is contained in Cp+, then there is at least one I'EfJ for 
which q(I')2<m2. To prove this, we note that CCCp+ 
implies (lemma C1) that 

A (!)t (I) = L X(I,I')t(I') for IE fJp, 
I'EiJ 

(5.14) 

where A(!) and X(I,!') are positive integers. By com­
paring any fixed component on both sides of Eq. (5.15), 
we easily see 

(5.15) 

If g(I')2 ?-m2 foraH I'EfJ, and if fEC, then each 
g(l') is positive timelike and we have23 

[q(!)2J!?- ~l'X(I)-lA(I,!')[q(l')2J! ?- m2, 

which contradicts with the assumption. This completes 
the proof of lemma 7. 

Finally we show that WpT(X) satisfies Eq. (2.28). 
Since WpT(X)=Wp'YT(X) for any 1', we obtain, because of 
Eq. (3.6), 

L O(xO; Cp/C)WpT(X) = L O(xO; CP'Y/C)wP'YT(x). 
P P'Y 

• 23 If ai is positive timelike [(1:ai)2]!~1:(ai2)!. This is easily seen 
III the rest system of ~ai. 
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Substituting the definition of WpT(X) into this equation 
and using Eq. (3.23), we obtain 

L 8(xO; CpjC;)WpT(X) = L 8(xO; C;,+jCi)ri'(x). 
p v 

By using (R2) and Eq. (3.22), the term with i' ~i 
vanishes. By 8(xO; C;+jC i )=8(xOj C;+), the remaining 
term is identical with ri(x), 

6. PROOF OF THEOREM 2 

The Fourier transform of ri(x), 

(6.1) 

is analytic for sET(ViQ) because of (R2). Conversely, 
if ri(S) is analytic in T(ViQ) and satisfy certain bounded­
ness condition, then its boundary value ri(q) has the 
property (R2). Since ri(s) is covariant, because of (R1), 
it is analytic in the extended tube T'(V;Q) by the 
theorem of Hall and Wightman.24 

We shall now prove from the property (R3), that 

lim ri(r+ieq)= lim rj(r-ieq), (6.2) 
.-++0 .->+0 

where Ci and C are neighboring across the plane h(I), 

(6.3) 

qEQ,[q' t (1)]2 > 0 and gO. t(I) >0. If this is proved, then 
by the edge of wedge theorem,26 ri and rj are analytic 
at };(ij,m)26 and identical with each other, and, there­
fore, theorem 2 is proved. 

To prove Eq. (6.2), we denote the boundary values 
in Eq. (6.2) by ri(n and rj(r). By taking the Fourier 
transform of Eqs. (3.16) and (3.13), we obtain 

8(xO; CjC;)-8(xOj CIC j) 
=ue{C; C[t(I)]}81[(xO)r; Cr/C;j], (6.4) 

where C1 = C+h[t(I)] (as a set in T mod h[t(I)]), 
C;j=c;nCj(Ch(l) = h[t (I)Jl·) , (XO)r is xO taken 
mod h[t(l)]. 81 is as described in lemma 3, and u is 
defined by C[t(l)Y:)C;. By using the addition theorem 
of Eq. (3.6) for the left-hand side of Eq. (6.4) we easily 
see 

e(UCp ; C[t(l)])81[(x°)r; (UCp)r/C;j] 
=};e(Cp; C[t(I)])81[(XO)I; (Cp)r/C;iJ, (6.5) 

where UCp is any partial sum of Cp and is assumed to 
be a polyhedral convex cone. 

On using the integral representation Eq. (6.1) for 

2' D. Hall and A. Wightman, Kg!. Danske Videnskab. Selskab. 
Mat.-fys. Medd. 31, No.5 (1957). 

2. H. Bremmermann, R. Oehme, and J. G. Taylor, Phys. Rev. 
109, 2178 (1958); J. G. Taylor, Ann. Phys. 5, 391 (1958); F. J. 
Dyson, Phys. Rev. 110, 579 (1958); L. Garding and A. Beurling 
(to be published). 

26 Compare H. Epstein, "Generalization of the edge of wedge 
theorem" (preprint). 

ri(n and rj(n with sE!,(ij,m), we obtain by Eq. (6.4) 

ri(r)- rj(r) = fei(i.X)dX L e{Ca .; C[t(I)]} 
a> 

Since Cap is a partial sum of Cp , we can rewrite Eq. (6.6) 
using Eq. (6.5) as 

ri(r)- rj(r)= f ei(i.x)dx ~ 81[(x°)r; (Cp)r/C;iJ 

Xe{Cp ; C[t(I)]}wpT(x). (6.7) 

We now introduce a basis t(I), t2· .. tn in T and make 
the transformation of variables x ~ y, through 

n 

x=t(l) ®Yl+ L t;®Yi' 
i=2 

(YI and Yi are Minkowski vectors.) Then 81 in Eq. (6.7) 
is independent of YI and if t(l)EF1(CP), the Fourier 
transform of WpT(X) in YI with fixed Yi, i?: 2, 

= (271')n-1 f exp[ - E(q,y;) ·ti] 

X5[p-q· t(I)]wpT(q)dq 

vanishes for p2<m2 because of (W3). On the other 
hand, if t(l) E!:FI (Cp), then e{Cp ; C[t(I)]} vanishes 
by the definition of Eq. (3.15) and hence we have 
ri(n= rj(n for sE!,(ij,m). 

We note that Eq. (2.39) is obtained from Eq. (6.1) 
because if sET(V;Q) then 1m sOEC;. Unlike Eq. (6.1), 
Eq. (2.39) holds in all T(V;Q). 

Finally we add the proof of Eq. (2.45). By definition 

T(X)=!'p8(xO; Cp)wp(x). 

If we use 8(xO; Cp)=8(xO; CpjCp+), we obtain 

We now assume that s(=qO)EC;. If Cp+-:JC;, the 
replacement of Cp+ by C; can be done trivially. On the 
other hand, if CP+j)C i , then s' t(I) <0 for at least one 
lEap and as a result of (W3), at v=s, 

will be analytic. Hence we can again replace Cp+ by C;. 
Thus we have the formula (2.45). 
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7. ADDITIONAL REMARKS Because of Eq. (A.2) we can define 
To make theorem 1 of Sec. 2 precise, one has to state 

the class of distributions to which WpT and ri belong.16 

We do not attempt to make a precise statement as to 
the class of distributions for which our proof holds, but 
we would like to make some remarks pertinent to this 
point. 

The behavior for large value of space-time coordinate 
can be estimated by physical arguments and it is 
expected that WpT decreases exponentially in spacelike 
directions and according to a power law in timelike 
directions. This behavior will be inherited by rio Hence 
the assumption that the multiplication of r.(q) by 
(J(t; C;I t) is well defined is a reasonable one. 

We have shown that WpT and Wp yield the same rio 
We have also shown that WpT can be obtained from r. 
by an inversion formula. The reason why Wp cannot be 
obtained by the same inversion formula is the following. 
Wp will (in general) approach to nonzero values for large 
separation of its coordinates because of the vacuum 
intermediate state. Because of this, expressions like 
(J(t; Gilt)wp(q) have ambiguity and, especially, the 
formula (3.23) cannot be used when multiplied by 
W(q).16 Thus, if we substitute Eq. (2.28) with WpT 
replaced by Wp into Eq. (5.1), we cannot change the 
order of summation over P and multiplication by 
(J(t; Gilt), and, hence we do not get wp(x). On the 
other hand, if WpT behaves as we conjectured, then we 
will obtain WpT by Eq. (2.29). This is one of the reasons 
for using WpT instead of Wp. 

We do not know much about the behavior of wp(q) 
for large energy momentum. If wp(q) does not decrease 
for large q, we have to use the subtraction method. It 
seems to·be a nontrivial problem to extend our results 
to this case. 

APPENDIX A. CASE OF MORE COMPLEX 
SPECTRUM CONDITIONS 

We define m(P,k) by the lowest upper bound of m 
such that 

('1'o,Ap(l) (XI'(l»' .. Ap(k) (XP(k» (P m-Po) 
XAp(k+l) (XP(k+l»' .. Ap(n+1) (XP(n+l»'1'O) (A.l) 

vanishes identically where Pm is the projection into 
states with mass below m and Po is the projection into 
the vacuum '1'0. We first prove 

m(P,k) = m(P',k) if I(P,k)=I(P',k). (A.2) 

Suppose (A.l) vanishes identically for P andm<m(P,k). 
Then (A.l) vanishes for P' and m<m(P,k), if the 
points XP(l)' .. Xp(k) and XP(k+l)" .. Xp(n+l) are spacelike 
to each other within each group. We now note that (A.l) 
for P' as a distribution in the difference variables 
~i=XP'(j)-XP'(i+l) is a boundary value of a function 
which is analytic for 1m ~iE V _. Hence27 Eq. (A.i) for 
P' also vanishes identically for m<m(P,k). 

.7 By the theorem of Hall and Wightman, the analytic function 
in question is analytic in a Jost point CR. Jost, Helv. Phys. Acta 

m(I)=m(P,k) if I=I(P,k). (A.3) 

We now assume the following: 

Assumption A. m(I) with fixed I is the same for all 
n such that wp(x)¢O. In addition, for integers Aj>O, 

m[I(n+i)-IJ=m(I), (A.4) 

'i:,iA,m(Ij) ~ m(I) if t(I) ='i:,jAjt(I i). (A.s) 

Equation (A.4) is obviously true for Hermitian fields. 
The idea behind Eq. (A.s) is the following. The state 

Xi 
'1'= II II II Ai(xjvi)*'1'O 

jv=liEI; 

will have the same quantum numbers (which is asso­
ciated with fields, additive, and zero for vacuum state)28 
as the states 

'1"= II Ai(X.)*i'o and '1'''= II A.(x,)'1'o. 
iEI iE-I 

By definition of m(I j) there is a state '1' i with mass 
around m(I i) such that 

('1' h II A • (X.) *'ito) ¢O. 
iEI; 

O~ assuming asymptotic conditions, we write '1'j in 
the form '1'j=Fj(A in)'1'o. Then the state 

'1''''=ll;[Fi(A in)Jf\¥o 

will have the same quantum number as '1' and the mass 
around 'i:,iA,m(Ij). Then, assuming no accidental can­
cellation, ('1','1") and ('1','1''') will not vanish identi­
cally, and we see that Eq. (A.s) is a reasonable assump­
tion. 

We note that for n= 2, Eq. (A.s) takes the form 

m.+mi~mk~ Im,-mil, (A.6) 

where (ijk) is any permutation of (123).29 
As will be proved in Appendix B, WpT will satisfy 

(under the assumption B) 

(W3') WpT(q)=O unless q·t(I)EV+ and [q·t(I)J2 
~m(I)2 for all IEdp. 

By the same proof as for (R3), we obtain 

(R3') ri(q) = ri(q) if G. and G i are neighboring 
across h(I) and if [q·t(I)]2<m(I)2. 

30,409 (1957)J, where we have proved that Eq. (A.!) vanishes. 
Hence it vanishes identically. We could use also edge of wedge 
theorem (instead of Jost points), taking 0 as the analytic function 
approaching the same boundary value from the other side. 

28 For multiplicative quantum numbers of the form (_!)n, one 
can take n mod 2. 

19 We thank Professor A. S. Wightman for an illuminating ex­
planation of the relevance of Eq. (A.6) for the sufficiency of the 
condition of the type (R3). 
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We also obtain the analyticity of f(n at 

'2(ij; {m(I)})={rEZ'; 1m rES(ij), 
[Re q·t(In<m(I)2}. (A.7) 

The sufficiency of (R3') for (W3') will be established in 
the same way as in Sec. 5, if the following is true 
(compare lemma 7). 

(Ml) If [q·t(In<m(I)2 for at least one IEfJp and 
.:lpQ({m(I)}) contains q, then each cone Cp,Q contains 
points outside of Cp+, where 

..lpQ({m(I)})= {qEQ; Up (I) ([q. t(In 
-m(I)2»O}. (A.8) 

This lemma follows from Eq. (A.5) in the same way 
as the proof of lemma 7, if the following statement is 
true: 

(M2) The X(I) in Eq. (5.13) can be taken as 1. 
Namely, if 

C= n C[t(I')J+ and CCCp , 

I'Ed 

(1), (3a), and (3b) [but not (2)J we have 

lim ('1'o,BU(Xa,1)C%) = ('1'o,Bi'O) ('1'o,C'1'O) , 
A->OO 

where U(Xa,1) is the unitary operator for the trans­
lation by Xa, and a is any spacelike vector. If Band C 
anticommute for spacelike x'-Yj, then for sufficiently 
large X 

('1'o,BU(Xa)Gi'o) = - ('1'0, CU( -Xa)Bi'o) . 

Hence we have 
('1' c,B'1' 0) . ('1' 0,Gi' 0) = o. (B.1) 

We now consider the truncated vacuum expectation 
values defined recursively by Eq. (2.3). We note that, 
although the definition of sign CJ of each term in Eq. 
(2.3) refers to the order of the factors in that term, u 
is actually independent of their order or else that term 
vanishes identically due to lemma B. 

We define 

(A.9) W(il' .. ik) = ('1'o,A 'I(X'I)' .. A ik(Xik)'1'O)O'i l · .. (ik), (B.2) 
then 

t(I)= L X(I,I')t(I') for IEfJp, 
I'EiJ 

where X(I,I') is an integer. 
We have been unable to prove this for general n, but 

for n ~ 4 (n= 4 corresponds to the five-point function) 
(M2) can be verified easily. 

Summing up we have the following theorem: 

Theorem A. If WpT satisfies (W1), (W2), and (W3'), 
then y. satisfies (R1), (R2), and (R3'), and (R4). The 
converse is true, if (M1) holds (which is the case for 
n :S 4). f(n is analytic in the union of extended tubes 
T'(V.Q) and at the points of '2(ij; (mel)}). 

APPENDIX B. TRUNCATED VACUUM 
EXPECTATION VALUES 

First we prove a lemma which will be used in later 
discussion. Let B(Xl' •. x,,) and C(YI' . 'Y",) be products 
of fields B.(Xi) and Ci(Yi), respectively. If the theory 
satisfies (2) in Sec. 2, B(XI' .. x .. ) and C(YI' .. Ym) either 
commute or anticommute if all the X,-Yj are spacelike. 

Lemma B. If B(XI" ·x,,) and C(YI" 'Y"') anti­
commute for space1ike xi-Yh then the vacuum expec­
tation value of either B(XI' . ·x,,) or C(YI' . 'Y"') vanishes 
identically.30 

For the proof, by theorem 3 of our previous paper31 
which has been proved there under the assumption of 

30 We assume (1), (2), (3a), (3b), and (3c) for the theory. How­
ever, we do not make assumptions about the connection between 
commutation relation among different fields and the type of fields. 
See H. Araki, ]. Math. Phys. (to be published). 

31 H. Arap, Ann. Phys. 11, 260 (1960). Theorem 3 in that 
paper is expressed in terms of wT • However, the properties used 
for wT in the proof are the covariance and the existence of lowest 
positive mass in that intermediate state where U (Xa,l) is inserted. 
('lto,BU(Xa,l)OIro)- ('lt o,B'lto)('lto,0Jro) clearly has these proper­
ties. 

[il' .. ikJT= [A il(Xi)' .. A ilk(Xik)JTCJ(il' . ·ik). (B.3) 

U(il' .. ik) is the sign which one obtains if one commutes 
fields from the natural order to the order il" . ik for 
totally spacelike configuration of x •. Up of Eq. (2.1) is 
u[P(1)· .. P(n+ 1)]. 

The definition of Eq. (2.3) now becomes 

W(il' .. i",) = [il' .. imJT+'2GO'G[il' .. JT[ik' .. JT' . " 
(B.4) 

where the order of the i in [ JT is as in w, and the 
summation is over all groupings G of il" ·im . 0'0 is 

0'0 = 0" O'(il' .. im)O'(il · .. )CJ(h' .. ) ... 
= O'(il' .. ,ik' . ',' .. )CJ(il' .. )CJ(ik' .. ). . . (B.5) 

In this form we see that O'G depends only on the grouping 
and not on the order of il" ·im on w. Note that, by 
lemma B, U(il''',ik'' " ... ) is independent of the 
order of the groups (il"'), (ik"'), "', unless that 
term vanishes identically. 

The spectrum condition of Appendix A can be written 
as (W31/) w(il" ·im)=O unless q(il" ·ik)EV+, 

q(il' .. ik)2 ~ m(il · .. ik)2 

for all k:Sm or q(i l ·· ·ik)=O for some k~m, 

W(il' .. im) = O'(il ... im)O'(il ... ik)O'(ik+I' .. im) 
XW(il" ·ik)W(ik+I·· ·im) if q(il" ·ik)=O. 

The notations are 

w(i l •• ·i",) = f expi['2(qi,Xi)J 

Xw(i l ·· ·im)dxil·· ·dx."., (B.6) 

q(i1•• ·im)=qil+·· ·+qi".. (B.7) 
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Note that W contains 0 function, in contrast to our 
former definition of wP. 

We now strengthen assumption A a little. 
Assumption B. If t(l)="2iAjt(Ij) for integers Aj>O, 

m(l) ~"2jAjm'(Ij) unless m'(Ij)=O for all j, 
~minJm(Ij) if m'(Ij)=O for all j, 

where 

m'({ il· .. im}) =m({il· . ·im}) if W(il· . ·im)=O 

(B.8) 

=0 otherwise. (B.9) 

The idea behind this assumption is the same as for 
assumption A. 

We now prove the following theorem. 
Theorem B. If w(il· .. im) satisfies conditions (W1), 

(W2), and (W3"), then (il· .. imh satisfies (W1), (W2), 
and (W3'). The converse is also true. (We make the 
assumption B.) 

For the proof, the equivalence of (W1) for w(i l • •• im) 
and [il· .. imJT is obvious, because the defining equation 
has a unique solution in both directions. In addition, 
because (W2) is the requirement of symmetry in i and 
j, when Xi-Xj is spacelike, and because Eq. (BA) is a 
completely symmetric definition, the equivalence of 
(W2) for weir .. im) and [il· .. imJT is also obvious. (It 
is important here that rTa is independent of the order 
of i l • .. im.) 

We now prove the equivalence of (W3") and (W3'). 
First suppose q(il· .. i/)2 < m(ir .. i/)2. Then by assump­
tion B, for any grouping of i l ··· ii, either there is a 
group for which q(ik·· .)2<m'(ik·· .)2 or else q(ik·· .)2 
<m(ik· .. )2 for all groups. From this we easily see that 
(W3') implies (W3"). To prove the converse, we define 

(il· .. im)o= rT(iI· .. im)('l'o,A il (XiI) (1- PO) ... 
X (1-PO)Aim (Xim)'l'O). (B.lO) 

In the same way as in our previous paper,32 we can 
derive 

[iI • • ·inJT= (i I ·· ·in)o- L: rTa[i I·· . JT· .. , (B.ll) 
con 

where the summation is over all connected groupings.33 

We can now apply the previous argument to Eq. (B.ll) 
and sdsily see that (W3") implies (W3'). 

Finally we prove that Ti defined from WpT and wp 

are the same. We show that the term from the summa­
tion over G in Eq. (2.3) cancels out in Eq. (2.28). 
Consider one fixed grouping (il···ik), (jI···jl), .... 
We note that there are several wp which contribute to 
the same term of the form (Xii· .. Xik)T(XiI· .. Xil)T· ... 

32 H. Arakia,; see Eqs. (2.11)-(2.16). 
33 If each group of a grouping G occupies consecutive positions 

in (i,·· ·in ), then G is called a division of (i, . . ·in). If a grouping 
is a subgrouping of a proper division, then it is called a discon­
nected grouping. Otherwise, a grouping is called a connected 
grouping. Thus for a connected grouping, numbers in one group 
are interlocked in (i,·· ·in), with those in another group. 

The union of the C p for such P is the cone 

Ca={tET;tiI~···~tik, tiI~···~tjl,···}. 

This cone is obviously not pointed. Since rTa is inde­
pendent of P, we see from Eq. (3.7) that the contribu­
tions from various P cancels out. 

APPENDIX C. CONVEX POLYHEDRAL CONES34 

Consider a real n-dimensional vector space T and its 
dual S. A k-dimensionallinear subspace is called k-plane. 
The linear subspace generated by a subset TI is denoted 
by h(TI). For example, 

m 

h({tI,' .. tm }) = {L: Piti; Pi real}. 
i=l 

The orthogonal compliment of h is denoted by h~. (If 
hE T, then h~ES. If H is a family of planes h, then H~ 
means the family of planes h~.) The convex polyhedral 
cone generated by tI, ... tm is denoted by 

m 

C(t I ,·· ·tm)= {L: Ait,; Ai~O}. (C.1) 
i=l 

The positive polar C+ and the negative polar C- of a 
convex cone C is defined by 

C+= {sES; s·t ~O, tEG}, 

C-= {sES; s·t ~O, tEG}. 
(C.2) 

The polars of a polyhedral convex cone in T are again 
polyhedral convex cones in S. The positive polar of 
the positive polar is the original cone. Note that 

C(tl···tm)+={sES;s·ti~O, i=l, ···,m}, (C.3) 

h(ll·· ~:m)-=C(±tl·· ·±tm ), h+=h-=hJ... (C.4) 

We call h(C) the dimensionality space of the cone C 
and its dimension the dimension of the cone C. A poly­
hedral convex cone C has nonempty interior, if, and 
only if, dim C=n. The maximum linear subspace 
contained in C is called the linearity space of C and its 
dimension is called the linearity of C. [Notation: L(C) 
and lin c.J If lin C=O, C is called pointed. C is pointed, 
if, and only if, there is a (n-1)-plane intersecting with 
the cone C only at the origin. We have the following 
relations: 

h(C+) = h(C-) = L(C)\ L(C+) = L(C-) = h(C)\ (C.S) 

dim C+lin C+=dim C++ lin C=n. (C.6) 

By Eq. (C.6) C is pointed, if, and only if, C+ has non­
empty interior. 

An extremum subset X of C is the set such that tl, 
t2EC and o:t1+i3t2EX for some positive 0: and 13 with 
0:+13= 1 necessarily imply tl, t2EX. Any convex 
extremum subset of C is again a polyhedral convex cone 

34 Compare M. Gerstenhaber in Activity Analysis of Production 
and Allocation, edited by T. C. Koopmans (John Wiley & Sons, 
Inc., New York, 1951), Chap. 18. 
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and is called k-facet where k is its dimension. If dim C = n, 
the (n-1)-facets of C form the boundary of G. If 
lin C=O, the 1-facets of C generate G. If k+ 1 <dim C, 
a k-facet F is a k-facet of some (k+ 1)-facet G and the 
intersection of such G is F. If j+ is a k-facet of C+, f is 
called k-corner of C. One-facet is sometimes called 
extreme half-line and 1-corner is sometimes called sup­
porting half-space. We denote the set of all k-facets of 
C by Fk(C), the set of all hU) with fin F k(C) by H k(C), 
and the set of all k-corners by Fk+(C). 

The sum C+C' is the set of all sums t+t' for tEC 
and t'EC'. It is again a polyhedral convex cone. Note 
that C(T1UT2)=C(TI )+C(T2) where Ti are subsets 
of T. The intersection CnC' is also a polyhedral convex 
cone. The C's form a lattice with the operations + and 
n. C+'s form its dual. Namely, 

(ClnC2)+Ca= (CI+Ca)n(C2+Ca), 

(CI+C2)nC3= (ClnC3)+(C2nCa), 
(e. 7) 

(C+C')+=C+nC'+, (CnC')+=C++C'+. (e.8) 

[Note that C can be replaced by h because of Eq. 
(e.4).] The set of -t for all tEC is denoted by -G. 

If every element S of a set 2: is expressible as a positive 
linear combination S=2:A(V)S(V) (A(V) ~O) of elements 
s(v) of a subset 2:', then 2:' is called a positive basis of 2:. 
If every S in 2: is expressible as s= ±2:A(V)S(V) (A(V) ~ 0), 
then 2:' is called a c basis of 2:. A c basis of 2: which does 
not contain any sub-c basis is called c minimal. If C(2:) 
for a finite set 2: is pointed, 2: has a unique c minimal 
positive basis. If a finite set 2: is c minimal, C(2:) is 
pointed and FI[C(2:)] consists of C(s), sE2:. 

We now state a lemma which is equivalent to the 
statement (C+)+=G. 

Lemma Cl. If S·tl~O, .. ·s·tm~O imply s·t~O, 
then t=2:iAiti with some nonnegative Ai. 

Given a family of (n-1) planes, H={h(s)~;sE2:}. 
If hC~) is the total space S, then the planes in H will 
divide the entire space T into several pointed polyhedral 
convex cones with nonempty interior. We denote the 
set of all these convex cones by r(H). Let 

2:0= {±s; sE2:} 

and 2:" be distinct c-minimal c basis of 2:0• Then 
r(H)={C(2:,,)+}. If we denote the set of k-planes 
generated by a subset of 2: by Ih(2:), then H k[C(2:,,)] 
Clh(2:) and H k (C)CIIn-k(2:Y for any CEr(H). 

A cone C(tl' .. tn) with dimension n and linearity 0 
is called a simplex cone. Its polar is also a simplex cone. 
If Si·tj=Oih then C(tl" ·t,,)+=C(SI·· ·Sn). Any poly­
hedral convex cone with dimension n can be decomposed 
into a union of almost disjoint simplex cones c,x. 

C=U"Ca , Ca : simplex, dim C"nC(3<nfora;;e/1. (e.9) 

If FI(Ca)CFI(C) for all a, this decomposition is called 
a standard simplexial decomposition. We now prove 
the following lemma: 

Lemma C2. If dim C=n and lin C=O, C has a 
standard simplexial decomposition. Furthermore, for 
any given plane h not belonging to H n-I (C), there is a 
standard simplexical decomposition (e.9) for which 
hEEHn-I(Ca) for anya. 

For the proof of the first half, take any 1-facet ft 
and consider all polyhedral convex cones C" generated 
by ft and any (n-1)-facet f n-Ia not containing ft. 
We easily see that C= UCa , dim (CnC(3) <n for a ;;e/1, 
and FI(Ca)CFI(C). Hence by induction on the number 
of 1-facets, we get the first half. Moreover, we get the 
second half by always taking a 1 facet fl not containing 
the given plane h. Note that if ft<th and if there is only 
one facet not containing fl, then any standard simplexial 
decomposition after that stage will have the property that 
hEEH n-I(Ca ). Note also that if there is only one (n-1)­
facet not containing ft for every 1 facet ft, then the 
cone is simplex. 

Note added in proof. The definition (2.30) of ViQ 
should be replaced by 

ViQ=C(V +0interior of C,) 

where Q is considered as a direct product of a Min­
kowski space and S. A similar definition can be given 
for V pX but is equivalent to Eq. (2.33). The author is 
indebted to Dr. O. Steinmann for pointing out the 
unfitness of (2.30) for the proof of analyticity in T(ViQ) 
in Sec. 6. 
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Although the radial Green's function for the Schrodinger equation in a Coulomb field can be obtained 
in the usual way in terms of the two linearly independent solutions to the radial equation for a particular 
angular momentum state, the sum over angular momentum states does not seem to have been carried out. 
In this note this sum is carried out and a "closed form" obtained in the form of a double integral. The result 
is believed to be useful for perturbation calculations where the "intermediate states" involve many angular 
momentum states. 

T HE nonrelativistic radial wave equation for a 
Coulomb potential, corresponding to angular 

momentum state I, is of the form 

d
2 

[ 2iE 1(l+1)] 
--u(x)+ -1+---- u(x)=O. 
dx2 x x2 

We will first consider solutions to the radial equation 
in this simple form, so that the formulas will look 
more transparent. The transformations which bring this 
to the more familiar form of the Schrodinger equation 
will be introduced later at the appropriate place 
[see Eq. (14)]. 

Consider the function Ul (x) , which is the radial 
solution corresponding to angular momentum I and 
which is finite at the origin, 

xl+le-x i 1 

dt(1- t)l+i,tl-i'e2xt 
r(l+1+iE) 0 

(1) 

Re(l+1-iE»0; Re(l+l+iE) >0. 

Trivially, this can be transformed into another 
integral which contains a spherical Bessel function of 
integral order: 

x(2i)-1 II 
Ul(X) =--- dt(1- t)io-le-i•e- xC!-t) jl(ixt) 

r(iE) 0 

Re(l+1-iE»O; Re(iE) >0. 
(2) 

On integrating by parts and using the fact that 
jl(ixt) is an entire function of its argument, 

x(2i)-1 i 1 a 
Ul(X) dt(1- t)i'e-i,_[te-xc!-t) jl(ixt)] 

r(1+ie) 0 at 
(3) 

Re(l+l-ie»O; Re(ie)> -1. 

Thus, one sees that Ul(X) as given by Eq. (3) is an 
analytic function of e in the complex e plane in a 

* Research supported in part by the National Science Founda­
tion. 

region larger than that given in Eq. (2). All we will 
need is the fact that Eq. (3) will be an analytic function 
of e inside the circle I e I = 1 for every l. 

An analogous result for the second solution uz(x) 
which is finite at infinity does not seem to be available 
in the literature, and will be derived in the following in 
some detail. 

Consider uz(x) defined by 

(4) 

It will be shown that 

U2(X) 

-x(-2i)-1 f'" 
dS(S-1)-ie-1Si'hz'l) (ixs)e-xCo-1) 

2r( -ie) 1 
(5) 

Re(-ie»O. 

The proof will be simpler if one proceeds from 
Eq. (5) to Eq. (4). On using the modified Poisson's 
integral representation for hz'1l(ixs), U2(X) as given by 
Eq. (5) can be written as follows: 

X j"'ap(p-l)lpleXCl-28P) (6) 
1 

Xl+l j'" 

r(-ie)r(1+1) 1 

ds(s-1)-i.-1SI+i. 

Xf"'dP{~[(p-1)leXCI-2p'.8l] } 

1 aj31 (_2Xs)l iJ-l. 
(7) 

On making use of the identityl 

al+! r(l+1-iE) 
--[si·(s-1)H.] . sie-l-1(s-l)-it-l, 
as!+! r(-H) 

(8) 

1 This identity is easily proved by induction on t. 
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one obtains 

{ 
iJl [ e.,(1-2.PJ ] } (9) 

X a~1 (_2X)/(2xml+l P_l 

Xl+! f'" 
. r(l+l-iE) 1 

ds(s-1) Hfsif 

X{~/[e"(1-2'IlJ]} (10) 
a~1 (-2X)1 Il-l 

xl+1e" f'" 
ds(s-1)Hesl+iee-2", Q. E. D. 

r(l+l-iE) 1 

As before, upon integrating by parts in Eq. (5) and 
upon using the regularity at s= 1 and boundedness at 
s= 00 of the function h/1J (ixs) , 

x( - 2i)-Z f"" a 
U2(X) dS(S-1)-i·Si.-

2r(1-iE) 1 as 
X [se-,,(o-l)hP) (ixs)]. (11) 

Thus U2(X) as given by Eq. (11) is also an analytic 
function of E for \ E \ < 1 for every l, in common with 
Ul(X) as given by Eq. (3). 

We now consider the radial solutions to the Schro­
dinger equation for a Coulomb potential, corresponding 
to angular momentum state 1. They are usually denoted 
by Wl(") and W2("), and are related to Ul(X) and U2(X) 
by2 

Wl(,,)=C!Ul(X) (12) 

W2(") = DIU2(X) , (13) 
with 

E= ('YIp); x=-ipr; p= (2D)i (14) 

E(energy)mo e2Zmo 
3 ; 'Y=--. (15) 

ft2 %-Eoh2 

These functions are defined in a cut 3 plane, the cut 
being along the positive real axis. The square root is 
defined to have a positive imaginary part in the cut 
plane. The CI and DI are constant normalization 
factors. Since the Green's function constructed from 
these functions will be independent of their normaliza­
tions, we will for simplicity set CI=DI= 1. 

The Green's function is obtained, following the 
usual procedure,3 as 

GI(,.',,.",3 ) = [J (3) J-l[6(,.' -,.")W2(,.')Wl (,.") 
+0(,." -,.')Wl (r')W2 (,.")J, (16) 

2 See, for example, N. F. Mott and H. S. W. Massey, Theory oj 
Atomic CoUisions (Clarendon Press, Oxford, England, 1949), 2nd 
ed., Chap. ID. 

a B. Friedman, Principles and Techniques of Applied Mathematics 
(John Wiley & Sons, Inc., New York, 1956), Chap. 3. 

where 
1 ,.>0 

6(,.)= for 
o ,.<0' 

and the Wronskian 

J(3)=Wl(")W2'(")-W2(")Wl'(,.) =ip(2)-2H. (17) 

Thus, using Eqs. (3) and (11), for ,.">,.', one gets 

Gl (,.',,.",3) 

ipr',." 1 '" -----f dtf ds[s(1-t)]i'Ct(s-1)J-if 
r(l +ie)r(l-iE) 0 1 

a2 

X-Cste ip [r'(l-tl- r "(I-.)] jl(pr' t)hll) (P,." s)]. (18) 
ams 

We note that in this form the radial Green's function 
is an analytic function of E for \ E \ < 1 for every 1. In 
view of Eq. (14), this corresponds to analyticity in 
the cut 3 plane outside the circle \3\ = (-y2)/2, i.e., 
the circle passing through the lowest eigenvalue. 
However, since we know that the Green's function is 
an analytic function of 3 in the cut 3 plane (with the 
cut along positive real. axis and the square root having 
a positive imaginary part in the cut plane), except for 
poles along the negative real axis extending to 

3= - ('Y2)/2, 

the expression can be continued analytically inside the 
circle by integrating by parts as many times as is 
necessary. 

We now obtain the three-dimensional Green's 
function by summing over angular momentum states,4 

'" G(r',r",3)= (4lrr',.")-1 L: (2l+1)Pz(cosO)Gl(,.",r", 3) 
1-0 

(19) 
r' = j r' j; ,." = j r" j; cosO= r'· r"I,.',.". 

In order to interchange the order of summation and 
the integrations in G1(,.',,.",3) in Eq. (19), it is sufficient 
to show that L:(a2/atdS)[jl(pr't)h z(1)(P,."s)J converges 
uniformly and absolutely in some region in the cut 
3 plane (Le., for Imp> 0) for all sand t in the ranges of 
integrations. We first show the uniform and absolute 
convergence for the series L:[jl(P,.'t)hl(1)(P,,"s)]. (The 
series actually converges to an analytic function of 3.) 

On using the familiar expansion 

eip Isr" -t r' I 

ipjsr"-tr'j 

'" L: (21+1)Pz(cosO) 
1-0 

Xjz(pr' t)hZ(l) (pr" s) (20) 

Im(p) >0, 
4 Remembering that 

lJ(r"-r') = (4?rr'r")-I/j(r"-r')2: (2l+ l)PI(cos8). 
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one sees by inspection of the left-hand side that the 
expansion converges in the complex cosO plane inside 
an ellipse with foci at ± 1, and with semimajor axis 

M = [(sr")2+ (tr')2J/ (Zstr'r") > 1. (ZI) 

On the other hand, a function f(cosO,tr',sr") which 
is analytic on and inside an ellipse E with foci at ±1 
can be expanded in a Legendre series, 

"" f(cosO,t1",sr") = (Z1ri)-1 L (2l+1)Pz(cosU) 
1-0 

Xi f(y,t1",sr")QI(y)dy, (22) 

which is uniformly convergent for all cosU lying in any 
domain wholly inside E.5 Furthermore, the function 
QI(Y), which is Legendre's function of the second kind 

and which is single valued in the cut Y plane with the 
cut along real axis from -1 to +1, satisfies the 
inequality 6 

IQI(y)1 < (1r/l)!(1-lwl-2)-tl wl-(1+1), (Z3) 

where w=y+(y2-1)!, and the real part of the square 
root is understood to have the same sign as the real 
part of y. The formula (Z3) is valid for I wi> 1, which is 
certainly the case for y on any ellipse with foci at ±1. 

If one chooses the semimajor axis to be 

M E= [(1''')2+ (/3r')2J/ (2/31"1'") > 1, (24) 
with 

(1'"/1"»/3>1, (Z5) 
then 

M E< [(1'")2+ (r')2J/ (21"1''') <M, (26) 
and 

I w I = r"l (/31"). (Z7) 

One therefore obtains, for l>O, 

I jl (plr')hzO) (psr") 1= - Qz(y)dy <NIl[(/3r')/r"JI+1. 
/

1 f exp{ip[(sr")2-2str'r"y+(tr')2J!} I 

21ri E ip[(sr")2- 2str'r"y+ (tr')2Ji 
(28) 

The existence of such a constant Nil, which is independ­
ent of l, t, and s, follows from the boundedness of 

exp{ ip[ (s1'") 2_ 2str'r"y+ (tr')2Jl} 

ip[(sr")2_ 2str'1'''y+ (tr')2J! 
(Z9) 

as a function of s and I, (1~t~O, s~ 1), for 3 in any 
bounded region in some sector in the cut plane, and y 
on the ellipse E. 

Since differentiating Eq. (29) does not change either 
its analytic properties or its boundedness, one concludes 
that the series L (a2/atas)[jz(ptr')hz<I) (psr") J is also 
uniformly and absolutely convergent for 1'''>1'', 

1 ~ t ~ 0, s ~ 1, and for 3 in some region in a sector in 
the cut plane. Furthermore, because of the presence of 
the term exp(ipsr") in front of jz(ptr')hP)(psr") in 
Eq. (18), the restrictions on the sector of i} can be 
relaxed, and one actually obtains, somewhat as a 
by-product, an estimate on the product of two confluent 
hypergeometric functions as a function of l, viz., 

1 Gz(r',r",3) 1 <N/(r',r")[(/3r')/r"JI+l. (30) 

This is valid for 3 in any region in the whole cut plane 
outside the circle 131 = (I'2)/Z. 

Now, interchanging the order of summation and ~he 
integrations in Gz(r',r",3) of Eq. (19), and carrymg 
out the summation, one obtains the principal result: 

G(r',r",3) 1 II f"" ------ dt ds[s(1-t)}'[t(s-I)J-i, 
41rr(l+ie)r(1-ie) 0 1 

a2 

X-(tsl sr" - tr'l-l exp{ip[r'(I- t)+r"(s-I)+ I sr" - tr'l J}), (31) 
alas 

where p= (Z3)i, and 1'''>1''. The formula is valid in 
the cut 3 plane (with the cut along positive real axis) 
outside the circle 13/=(1'2)/2, the square root being 
defined to have a positive imaginary part in the cut 
plane. We treated the case where the potential is 
attractive. In the case the potential is repulsive, the 
sign of e must be reversed. 

One notes that in the limit e --> 0, the expression 

5 E. W. Hobson, Spherical and Ellipsoidal Harmonics (Cam­
bridge University Press, New York, 1931), p. 62. 

correctly goes over to the free-particle Green's function, 

eipl r"-r'l 

limG(r',r",3)= (3Z) 
.->0 41r / r" - r' 1 
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The ~chrodi~ger equation with the ~omplex momentum k leads to an S matrix with very simple analytical 
properttes. It differs from the conventional S matrix as little as one wishes on the real k axis but it has in 
general, co~pletely different analytical behavior outside the real axis. The present formulation' removes s~me 
of the unsatisfa~tory feat~res of the conv~ntional formalism in the sense that no redundant poles can occur 
and a ~ha~e shift. determln~s t~e sc~tte~lng potential uniquely. The complete analytical behavior of the 
S matriX, In particular at Infinity, IS dIscussed and the theory is extended to Klein-Gordon and Dirac 
equations with central potential. 

1. INTRODUCTION 

A NAL YTICAL properties of the S matrix as a 
function of the momentum k or energy E has 

been the subject of extensive study. This is a central 
problem in the S matrix approach and in the theory of 
dispersion relations. The fundamental question is 
whether or not the S matrix (or the dispersion relations) 
contain enough physical information that it can replace 
the dynamics of the system, i.e., the Hamiltonian or 
the equations of motion. 

Although information about the bound states and 
the decaying and capture states can be obtained from 
the S matrix, it has not been possible to answer the 
above question completely in the affirmative. For 
example, in the case of potential scattering the S 
matrix may have redundant poles which do not corre­
spond to bound states,! or one can give examples 
showing that the phase shifts (or S matrix) do not 
d~term~ne the potential uniquely.2 Furthermore, the 
disperslOn relations for the scattering amplitude havr 
extra solutions which do not correspond to the solutions 
of the Schrodinger equation. 3 In most cases even the 
complete analytical properties of the S matrix in the 
whole complex plane are not known, since one can 
continue S analytically only in a region of the complex 
plane. 4 

In this paper we give a slightly modified form of the 
S matrix which has very simple analytical properties in 
the whole complex k plane and avoids all the difficulties 
just mentioned. In particular, it has no redundant poles 
and allows a unique determination of the potential. 
The basic idea is to start from a SchrOdinger (or Dirac) 
equation with complex k (hereafter referred to as the 
complex Schrodinger equation) rather than perform 
an analytic continuation on the solutions of the 
Schrodinger equation with real k. It is shown that in 
order for the complex Schrodinger equation to have an 
asymptotic solution proportional to sin[kr- (17r/2) 
+17I(k)], the potential must have a cutoff at arbitrarily 

1 S. T. Ma, Phys. Rev. 69, 668 (1946); 71, 195 (1947). 
2 V. Bargmann, Revs. Modern Phys. 21, 488 (1949). 
3 S. Gasiorowicz and H. A. Ruderman, Phys. Rev. 107 868 

(1957). ' 
4 R. Jost (unpublished); J. Bowcock and D. Walecka, Nuclear 

Phys. 12,371 (1959); A. Martin, Nuovo cimento 15, 98 (1960). 

large distances. This condition changes the S matrix on 
the real axis extremely slightly, but it has very large 
effects outside. This is a well-known situation in the 
theory of analytic functions. Two functions may differ 
only slightly in some domain, but may have completely 
different behavior outside this domain. Alternatively, 
the preceding condition may be taken as the criterion 
under which all the previously mentioned simplifications 
are achieved. 

We discuss the complete analytical properties of the 
S matrix for all 1. In particular, we show that SI(k) has 
an essential singularity at infinity in the lower half­
plane, the number of poles at infinity being infinite. 
Thus, it is shown that a representation of the S matrix 
as a product of its zeros and poles5 is not meaningful, 
and that dispersion relations for the S matrix in the 
lower k plane which have been recently proposed6 

are not valid. 
We first discuss the analytical properties of the 

functions FI(k) introduced by Levinson.7 In addition, 
we introduce the functions FI*(k) (Sec. II). The 
S matrix is expressed in terms of FI(k) and FI*(k). In 
Sec. III we investigate the analytical properties of 
SI(k), especially at infinity. In Sec. IV we show how the 
redundant poles are eliminated; in Sec. V we discuss 
the uniqueness of the potential for a given phase shift. 
Finally in Sec. VI the theory is extended to the Klein­
Gordon and Dirac equations with central potential. 
Most of our conclusions about finite range potentials 
agree with what is known about them in special cases.8 

We use units such that h2j2m= 1. 

II. ANALYTICAL PROPERTmS OF F.(k) 

It is known that the radial Schrodinger equation 

[ 
1(1+1) ] 

'lJz"(r,k)+ k2--
r2
-- VCr) 'lJI(r,k) =0, (1) 

where we assume k to be complex from the beginning, 

• N. G. van Kampen, Phys. Rev. 89, 1072 (1953); 90, 1267 
(1953). N. Hu, Phys. Rev. 74, 131 (1948). 

6 B. W. Lee, Phys. Rev. 112, t122 (1958). 
7 N. Levinson, Kg!. Danske Videnskab. Selskab, Mat .-fys. Medd. 

25, No.9 (1949). 
8 S. T. Ma, Phys. Rev. 71, 195 (1947). 
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k=A+iX, can be written in the form of an integral 
equation7 

jlCkr) 1 I r 

1Jz(r,k)=---- gz(r,t,k)V(~)1JI(t,k)dt, (2) 
kZ+l k 0 

with the boundary condition 

'O,(O,k) =0, 
where 

(3) 

and j,(Z), n,(z) are Riccatti Bessel functions. 9 

Equation (1) has, under the boundary condition in 
Eq. (3) and for vanishing potential at infinity, the 
asymptotic form 

Az(k) [7r1 ] 
lim '01(r,k)=-- sin kr--+7Il(k) , 
,.......'" kZ+1 2 

(S) 

where Az(k) and 'TJI(k) are continuous functions of k. 
Note that '01(k)='O,(-k); hence A,(k) is an even, 
'TJ1(k) is an odd function of k (see Appendix II). 

We define a function F,(k) by7 

Fl(k) = 1 +ikli"''OI(~,k)V(t)hl(kt)dt 
o (6) 

where 
=Fz'l) (k)+iF,(2) (k), 

FP)(k)= 1-k' £'" '01(~,k)V(~)nl(k~)dt 
o 

F,(2) (k) = klf"''OI(~,k) V(~)jz(k~)d~, 
o 

(7) 

since 
(8) 

Note that F,(l)(k) and F/2)(k) are complex, since k is. 
F1(1)(k) is an even function of k, Fz'2)(k) is an odd 
function of k. 

. The asymptotic form of Eq. (2), compared with 
Eq. (S), gives (generalizing a result of Levinson7 

for 1=0 to arbitrary 1 and complex k) the following 
relations: 

A Nk) =F,W(k)+Fz(2)'(k), 

tan7ll(k) = - [Fz'2) (k)/F,(l) (k)]. 
(9) 

This is shown in Appendix I. Note that for real k, 
k=A, m(A) are the phase shifts and we have 

AI(A)= IF1(A.)I, 

'TJzC>") = -argFzCA). 
(9') 

Thus, the function F,(k) determines the asymptotic 
form of the problem completely. S matrix, partial wave 
amplitudes jz(k), and asymptotic wave function can 

9 Note that these h(z) and nl(z) differ from the spherical 
Bessel functions by a factor z, also represented by the same sym­
bols; see, for example, L. Schiff, Quantum Mechanics (McGraw­
Hill Book Company, Inc., New York, 1955), p. 77. 

all be expressed in terms of it (see Appendix I): 

lim 1J1(k) 
'-+'" 

1 
---[Fz(k)e-ikr+ (-l)l+lFz(k)eikrJ 
2( -ik)l+l 

fz(k)=_l (21+ 1) [Fz* (k) -1] 
2ik FI(k) 

SI(k)= (-1)I[FI*(k)/F1(k)], 

where 
Fl*(k) =F/l) (k) -iF,(2)(k) = [F1(k*)J*, 

and 
F,*(k)=Fz( -k). 

(10) 

(11) 

(12) 

(13) 

(14) 

First we investigate whether or not FI(k) is defined 
in the whole complex plane. Considering the asymptotic 
behavior of the hl(k) function, i.e., 

lim hl(k~)"'eikE, 
~---'" 
k*O 

lim hl*(k~)~e-ikE, 
f--+ ., 
k*O 

(lS) 

we see that the integral in the defining Eq. (6) for 
FI(k) exists in the upper half-plane, but in general not 
in the lower half-plane, where we will have for large ~ 
a factor e-x~ with x<O, and the integral does not exist. 
Similarly, FI*(k) will exist in the lower half-plane and 
not in the upper half-plane. Hence, in order for the 
S matrix (12) to be defined, or equivalently, in order to 
have the asymptotic solution (S) for all k, the potential 
must be such that it compensates the exponential 
increase in h,(k). Potentials increasing faster than the 
exponential, say a Gaussian potential, satisfy this 
condition. One can, however, impose much weaker 
conditions, by putting a cutoff to the potential at 
arbitrarily large distances. One may say, therefore, 
that a cutoff in the potential at arbitrarily large 
distances is a consequence of the solubility of the 
complex Schrodinger equation in the form of Eq. (S). 
Of course, such a cutoff does not change the physics 
of the problem, but as we shall see it will simplify the 
analytical properties of SI(k) and will eliminate the 
unsatisfactory features of the usual formalism men­
tioned in the introduction. 

We study now the analytic properties of F,(k) and 
Fl*(k) in the complex k plane. Levinson7 has shown 
that for 1=0, 'Oo(r,k) and hence Fo(k) are analytic in 
the upper half-plane and continuous in the region 
x~O and 

lim Fo(k)=l 
Ikl .... '" 

in the upper half-plane, provided 

f«>rl VCr) Idr< 00. 

o 
(16) 
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One can generalize this theorem to arbitrary l, provided, 
in addition to (16), another condition is satisfied: 

(17) 

The proof is given in Appendix II, where we also show 
the following asymptotic expression: 

Q 00 

lim IFI (k)-11 =- f e-2x~IV(~)ld~ (18) 
X--4-00 /k/ 0 ' 

with Q some constant. Similarly F!*(k) is analytic and 

Q c<> 

lim /F!*(k)-l/ =- r e2x~IVW/d~. (18') 
X--4+OO Ik/ Jo 

Therefore, F!*(k) has an essential singularity at infinity 
in the upper half-plane. 

Using the Schwartz' reflection theorem in the theory 
of analytic continuation, it is seen that 

F!*(k) = [F!(k*)]*, and [F!*(k*)]*=F!(k) 

are also analytic in the lower-half k plane, with the 
difference that now F!*(k) approaches 1 as Ik/ ~ 'XJ 

and FI(k) has an essential singularity at infinity as it 
is seen from Eqs. (18) and (18'). As a matter of fact, 
from Eq. (14) we see that FI*(k) in the lower half-plane 
is equal to F!(k) in the upper half-plane. 

The wave function '01(r,k) is bounded (Appendix II)· . ' so IS the function h!(k~), except for the essential 
singularity at infinity. Hence from its definition, Eq. (6), 
we see that F!(k) and FI*(k) have no other singularities 
in the finite k plane. 

We conclude, therefore, that both FI(k) and F!*(k) 
are analytic in the whole complex k plane with no 
singularities, except the essential singularity at infinity 
in the upper half plane for FI*(k), and in the lower 
half plane for FI(k). 

III. SCATTERING MATRIX 

The scattering matrix in the momentum representa­
tion is given by Eq. (12). From the symmetry of FI(k) 
and Eq. (14), we derive the unitarity and the symmetry 
of the S matrix 

We remark at this point that the previous results will 
hold even for a complex, i.e., non-Hermitian potential, 
except for Eq. (14); hence the unitarity of the S matrix. 

Being essentially the ratio of F!*(k) and FI(k), the 
scattering matrix will be analytic in the whole complex 
plane with an essential singularity at infinity in the 
upper half-plane, and with poles corresponding to the 
zeros of FI(k). Since F!*(k) has no poles in the finite 
k plane, there will be no other singularities. 

One may, therefore, attempt to write dispersion 
relations for SiCk) in the lower half-plane,6 since there 
the numerator of Eq. (14) approaches 1 at infinity 
and the denumerator has an essential singularity. 
This would be possible, if F!(k) did not have any zeros 
at infinity. We will show, however, that F!(k) will have 
zeros at infinity in the lower half-plane. The proof is 
very simple and utilizes the following theorem: An 
analytic function comes arbitrarily close to any complex 
value in every neighborhood of its essential singular­
ities.lO F!(k) takes the value 1 as Ikl ~ 'XJ in the upper 
half-plane; hence it must take the value zero at infinity 
somewhere in the lower half-plane. 

As an example, we consider the square-well potential 
for which 

Fo*(k) [cosak'+i(k/k') sinak']e-iak 

SoCk) , (20) 
Fo(k) [cosak'-i(k/k') sinak']eiak 

with k' = + (k2+ Vo)!, where a is the range and Vo is the 
depth of the potential. All the previous theorems can 
easily be verified on this example. The zeros of F!(k), 
i.e., the poles of SICk), are given by the solutions of the 
equation 

cosak'-i(k/k') sinak'=O. (21) 

On putting k=A+ix, k'=x+iy and expanding k'=k 
+(1/2k)Vo+"" it is easy to see that Eq. (21) is 
satisfied at infinity only if X is negative (lower. half­
plane) and both A and X tending to infinity where A is 
of the order of e-X• The number of such zeros is infinite. 

We next prove quite generally that the number of 
poles of the S matrix in the lower half-plane is infinite. 
To see this, we first show in Appendix III that if SiCk) 
had a finite number of poles, it could be written in the 
following form : 

k-ka* (k-kfJ*) (k+kfJ) 
Sl(k)=±eickil--il , (22) 

a k-k" fl (k-kfJ)(k+kfJ*) 

where c is a negative number, ka are the poles corre­
sponding to the bound states, and kfJ, kfJ* poles corre­
sponding to the decaying and capture states which are 
symmetrical around the imaginary axis (see Sec. IV). 
This is the expression also derived by Hu and 
others· in the conventional theory which assumes, we 
emphasize, a finite number of poles. 

The expression (22) gives correctly the essential 
singularity at infinity in the upper half-plane, but it 
contradicts our previous result that SI(k) has poles at 
infinity in the lower half-plane; it does not take into 
account the infinite number of poles at infinity. More­
over, for real k and I k I ~ 'XJ, Eq. (22) would give 
SiCk) ~ ±eick or phase shifts TuCk) ~ !ck, or cross 
sections which fluctuate as k=A ~ 'XJ, whereas Eq. (12) 
gives SI(k) ~ (-1)1, or 'l!(k) ~ mr, as I k I ~ 'XJ which 
is correct from a physical point of view. 

10 N. Ahliors, Complex Analysis (McGraw-HilI Book Company, 
Inc., New York, 1953), p. 114. 
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IV. ELIMINATION OF REDUNDANT POLES 

In the conventional S matrix theory, one shows that 
the poles of the S matrix on the positive imaginary 
axis correspond to the bound states, and the poles in 
the lower half-plane symmetric to and off the imaginary 
axis correspond to the decaying and capture states.H 
These are the "true" poles of the S matrix. In addition, 
there are the so-called "redundant" poles1 which do not 
correspond to bound states. 

It will be shown now that in our formulation the 
true poles will correspond to the zeros of Fz(k) and the 
redundant poles to the poles of Fz*(k) in Eq. (12). 
Since Fz(k) and Fz*(k) are finite everywhere, no 
redundant poles will occur, nor any other singularity 
as found by Regge.12 

To see the meaning of the zeros of Fz(k), we use 
Eq. (10). Clearly, if Fz(k)=O for k=ix, x>O, we get 
exponentially decreasing wave functions, i.e., true 
bound states. 

It remains to see the relation of the present formula­
tion with the conventional analytical continuation and 
the origin of the redundant poles in the latter theory. 
For this purpose we write the solution of Eq. (1) for 
real k under the boundary condition (3) in the following 
form: 

"Oz(k,r) = N z (k)[fz ( -k)fz(k,r)e-ikr 
-fz(k)jz(-k,r)e,kr], (23) 

where fl(k,r)e- ikr, fz(-k, r)eikr are two independent 
solutions of Eq. (1), NI(k) a normalization factor, and 

jz(-k)=jz(-k,O); fz(k)=jz(k,O). 

If we compare the asymptotic form of Eq. (23) with 
Eq. (10) we get 

Sz(k) = (_l)ZFz*(k) = (_l)/I(k)fz( - k, 00), (24) 
Fz(k) fl(-k)jz(k, oo) 

and 

'Uz(k,r) 

[
fz(k,r) jz(-kr)] 

=N/(k) e-ikr-Sz(k) , eikr . 
jl(k,oo) jz( - k, 00) 

(23') 

In this form the S matrix depends on the values of the 
solutions fz(k,r), fl( -k, r), both at zero and at infinity. 
Since both Fz* and FI approach 1 as Ikl ----+ 00 for real 
k, we can actually identify 

fz(k,O) fz( - k,O) 
FI*(k) , FI(k) 

fz(k,oo) jl( -k,oo) 
(25) 

The poles of FI*(k), which are the zeros of jl(k,oo), are 
redundant as one can see from Eq. (23). At such zeros, 
both terms with eikr and e ikr do not vanish. This is the 

11 c. M~ller, Kg!. Danske Videnskab. Selskab, Mat.-fys. Medd. 
23, No.1 (1945). 

12 T. Regge, Nuovo cimento 9, 295 (1958). 

connection with the conventional formulation for real 
k. The fact that the analytic continuation of Eqs. (23)­
(25) does not necessarily agree with our SI(k) results 
from the fact that the asymptotic form of the wave func­
tion does not have the required form for complex k. Con­
sider, for example, the following potential used by Jost13 : 

Assuming a solution of the form 

jo(k,r) 

jo(k,oo ) 

00 

L c.(k)e-", Co= 1, 
.-0 

(27) 

we find from the Schrodinger equation c.(k)=2a·/ 
(1+2ik), and from Eq. (24) 

{k-i[(1 +a)/2(1-a)]} (-k-!i) 
SoCk) • (28) 

(k-!i){ -k-i[(1+a)/2(1-a)]} 

The limit of Eq. (27) as r ----+ 00 should be 1. This 
condition is satisfied for I X I <! but not for other 
complex k values, for 

jo(k,r) 

fo(k, 00 ) ( 
2a 2a

2 
) 1+--er+ e 2r+ ... ; 

1+2ik (1+2ik)2 

hence if I X I > 1, the second term cannot be neglected. 
Indeed this example leads to a true pole at 

k= -i[(1+a)/2(1-a)], 

which is a zero of FI(k). In addition, there is a redundant 
pole at 

k=i/2, 

which is a pole of Fo*(k). 
We conclude, therefore, that the solution (27) does 

not satisfy the asymptotic condition for complex k as 
we have required from the beginning. This holds true 
for all other examples in which redundant poles occur. 

It has been shown by Ma 8 that in the example of 
the exponential potential, a cutoff at arbitrary large 
distances removes the redundant poles. Our treatment 
shows that this procedure is quite general and gives its 
foundation and justification. 

We remark finally that the Heisenberg relations 

fOOSz(k)eik(r+r')dk= ~ I cn I 2e-kn(r+r') , 
-co 

(29) 

where the summation on the right-hand side is over 
bound states, which are not valid in the presence of 
redundant poles, regain their validity in tRe present 
formulation. 

13 R. Jost, Helv. Phys. Acta 20, 256 (1947). 
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V. UNIQUENESS OF THE SCATTERING POTENTIAL where 
FOR A GIVEN PHASE SHIFT V(r,k) = [2(k2+1)1- V(r)JV(r). (33) 

Levinson has shown that a single phase shift, 1/1(k), 
l fixed, determines the scattering potential uniquely, 
provided there are no bound states for the same land 
the potential goes sufficiently rapidly to zero at infinity.7 
If, however, there are n discrete bound states for the 
given l, then examples can be constructed showing 
continuous families of potentials involving n param­
eters corresponding to the same given phase shift, the 
so-called "phase-equivalent potentials."2 All these 
examples involve redundant. poles for the S matrix. 
We will show now that with the elimination of the 
redundant poles there is also a unique connection 
between a phase shift 1/1(k) and the scattering potential. 
The point is that the solutions considered in the case 
of phase equivalent potentials do not satisfy the 
asymptotic condition for the solutions of the complex 
SchrOdinger equation, as in the example of Eqs. (26) 
and (27). We give now a general proof. 

Let 1/l(k) or Sl(k) be the given phase shift or S 
matrix. Then from Eqs. (12) and (6) we get 

f '01(k,~)V(~)[( _1)ISI(k)hl(k~)+hl*(k~)]d~ 
1 

=-[1- (-1)ZSI(k)]. (30) 
ik 

If there are two distinct potentials VW and V'W 
and two solutions 'Ol(k,~) and 'Ol'(k,~) corresponding 
to the same S matrix, we get, from Eq. (30), 

f'" ['lJ/(k,~)V(~)-'Oz'(k,~)V'WJ 
o 

X[( -1)ZSz(k)hl(k~)+hl*(k~)Jd~=0. (31) 

Moreover, 'Oz and '01' must be the same asymptotically 
as ~ ~ <Xl, since the phase shift is given. This means 
that the integrand of Eq. (31) behaves at ~ ~ <Xl 
either as (V - V')e2ik~ or as (V - V')e-2ik~ for all 
complex k, depending whether x>O, or x<O. The 
integrand must, however, go to zero as ~ ~ <Xl, if the 
integral has to vanish. This is only possible for all 
complex k, if (V-V') is identically zero (not just 
approaching zero I). Then by continuity V-V' must 
be zero for all ~. 

VI. RELATIVISTIC CASE 

The previous discussion can be extended readily to 
the relativistic case. The radial wave function for the 
Klein-Gordon equation satisfies14 

[ 
1(1+1)] 

'Oz"(k,r)+ A2- V(r,k)--r-
2 

- 'lJ1(k,r) =0, (32) 

14 L. Schiff, footnote 9, p. 321. 

Equations (2) and (6) hold exactly here too with 
VW replaced by V(~,k) as given by Eq. (33). The 
condition on the potential are here 

f '" ~I V(~,k)ld~ 
----<<Xl 

o 1 +(k~) 

i '" 1V(~,k)1 
---,d~<<Xl. 

o I kl 

(34) 

By the same methods as in the nonrelativistic ca,se, 
one finds that Fz(k) has the same analytical properties 
as before except that it does not approach unity as 
\ k \ ~ <Xl in the upper half -plane. Indeed for k = A ~ <Xl 
we have the asymptotic form 

which is clearly different from 1 since V (~,A)/A ~ 2V(~) 
from Eq. (33). Thus, SI(A) will not approach 1 as 
A ~ <Xl. Hence the phase shifts approach a constant 
value at high energies rather than the value mr as in 
the nonrelativistic case. 

For Dirac particles, the radial wave functioncorre­
sponding to our 'Oz(k,~) consists of two functions which 
we denote by M K(r) and N K(r) satisfying the coupled 
first-order equations16 

[E+1- V(r)JMK(r)-N K(r)- (K/r)N K(r)=O 

[E-1- V (r)]N K(r)+MK(r)- (K/r)MK(r) =0, 

in the state with the quantum number K, where K2 
= (j+!)2. MK and NK correspond to j=l-! and 
j=l+!, respectively, and satisfy the same second 
order equation. 

M K"(r)+{A2-[K(K -1)/r2J- V(A,r)}MK(r) =0 

N K"(r)+{A2-[K(K +1)/r2J- V (A,r)}N K(r)=O, 

where V(A,r) is the same as in Eq. (33). Thus we reach 
the same conclusions as in the case of Klein-Gordon 
equation. In particular, the phase shifts will approach 
a constant value at high energies. 

CONCLUSIONS 

We believe that we have clarified some of the 
ambiguous and unphysical features concerning the 
analytical properties of the S matrix for potential 
scattering. The results we have proved are the following: 

1. In order for the Schrodinger equation with complex 
k to have asymptotic solutions for all k, the potential 
must have a cutoff at arbitrary large distances, or it 
must be such that the integral in Eq. (6) exists. 

15 L. Schiff, footnote 9, p. 335. 
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2. This leads to an S matrix given by 

which differs for real k from the conventional S matrix 
as little as one pleases, but in general has completely 
different analytical properties outside the real axis. 

3. In the foregoing expression for Sl(k), the functions 
Fz*(k) and Fz(k) are analytic in the whole complex k 
plane with no singularities except an essential singular­
ity at infinity in the upper half-plane, for F/(k) and 
in the lower half-plane for Fz(k). 

4. The S matrix so defined has no redundant poles; 
all the poles of the S matrix on the positive imaginary 
axis correspond to true bound states. The solutions in 
the conventional S matrix theory which give rise to 
redundant poles do not satisfy our boundary conditions 
for the solubility of the complex Schrodinger equation. 

5. The number of poles of the S matrix in the lower 
half-plane whIch correspond to decaying and capture 
state is infinite. Therefore, dispersion relations for the 
S matrix in the lower-half k plane do not exist. 

6. With the elimination of the redundant zeros there 
is a unique relationship between a phase shift and the 
scattering potential. The so-called phase-equivalent 
potentials do not survive. 

7. The theory can be extended to the relativistic 
equations with a central potential and essentially the 
same results hold. 

APPENDIX I. ASYMPTOTIC EXPRESSIONS 

Equation (2) in the limit r ~ 00 becomes 

jz(k1') 1joo 
lim 'Oz(1',k)=---- gz(1',~k)VW'OI(~,k)d~ 
r--+oo k l+1 k 0 

or using Eq. (8), 

jz(k1') 1 100 

lim 'Oz(1',k)=----jz(k1') nz(k~) V(~),oza,k)d~ 
r-+oo kZ+1 k 0 

1 00 

+-nz(k1')j jl(k~)V(~)'Oz(~,k)d~ 
k 0 

where we have used Eqs. (7). Asymptotically 

jz(k1') ~ sin(k1'-i1l"I), nl(k1') ~ -cos(k1'-j1l"I), 

and defining 
F1(l)(k) F I(2)(k) 

cos,/]!(k)=--, SiU7Il(k)= ---, (1.2) 
Al(k) Al(k) 

where 

we get 
Az(k) 

lim '01 (1',k) =--(sin(k1'-i1l"l) cos'l/I(k) 
r--+oo k1+1 

+cos(k1'-j1l"l) sim71(k)], 

which is just the Eq. (5). To show Eq. (10), we insert 
in (1.1) 

1 
jz(k1') ~ _(ei(kr-ilrl)_e-i(kr-torl) 

2i 

and then use ei! .. I=i1 and Eq. (6). 
Equations (11) and (12) follow from the phase shifts 

'/]!(k) : 

using Eq. (1.2). 

APPENDIX n. ANALYTICAL PROPERTIES 

(a) Analyticity of 'Ol(k,r) 

'Oz(k,1') depends on jz(k,1') and gz(1',~,k) [Eq. (2)]. 
These functions are bounded for X ;:: 0 by the following 
expressions7 : 

Ik1'I'H 
Jjz(kr)I~Kexr , 1';::0 

(1+lk1'I)ZH 

(1 + I k~\)l I k1'liH 
Igz(1' ~ k)1 ~Kex(r-t)-------

,," Ik~11 (1+lk1'I)ZH' 

(II.l) 

where K is some finite constant. Let us now consider a 
sequence of functions 'Oz(n) (k,1') defined by 

jl(k1') 1 fr 
'01(k,1') = k

1
+

1 
-i 0 gz(1',~,k) V(~)'OI(n-l) (k,~)d~ 

'01(0) (k,1') =0. 

By iteration and using the inequalities (II.1) we get 

/1'11+1 [L(1')]n-l 
1 'Ol(n)(1',k)-'OI(n-l)(1',k) 1 ~Kn exr , 

(1+lk1'j)IH (n-l)l 
where 

f r ~IVWld~ 
L(1')= . 

o l+lk~1 

Thus the sequence '01(n)(1',k) approaches uniformly to 
the limit 'Ol(r,k), provided L(1') is finite. This gives us 
the condition (15) in the text. Each '0 In) (k,1') is 
analytic, since it involves analytic functions jz(k1') and 
gl(1',~,k) only; hence the limit '01(1',k) is analytic in 
the upper half-plane. Furthermore, since each 'Ol(n) (r,k) 
is an even function of k, the limit '01(1',k) is also an 
even function of k. 
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Next we show that 'lJ1(r,k) itself is bounded by 

1'lJI(r,k) I ~Q[ex'lrll+l/(l+lkr!)IH], (II.2) 

where Q is a constant. To see this we write 

upon inserting this into Eq. (2) and using (ILl), we 
obtain 

f
T ~ 

M(r,k) ~ 1 + I VW I M(~,k)d~, 
o 1+1k~1 

or 

M(r,k) ~K exp(iT~1 V(md~ )=Q. 

Hence we obtain Eq. (II.2). 

(b) Analytic Properties of FI(k) 

Since 'lJ1(r,k) is analytic, we immediately see from 
Eq. (6) that FI(k) is also analytic in the upper half­
plane. To show that 

-lim FI(k)= 1 for x~O, (II.3) 
Ikl--

we write from Eq. (6) 

IFI(k)-11 ~lkll.£ool'lJla,k)1 /vWllhl(k~)ld~ 

= J'" A (k,~) I VW I d~, 
o 

where we have set 

A (k,~) = I k III 'lJI(~,k) II hl(k~) I. 
Now hl(k~) is singular at ~=O for I~O, and in the 
neighborhood of zero 

since 

1·3··· (21-1) 

Ik~11 

ZI+1 1·3·· ·(21-1) 
lim jl(z) limnl(z) 
0-+0 1.3 .. . (21+1)' 0-+0 Zl 

One might think, therefore, that A (~,k) is singular for 
~~ O. However, the other term in A (k,~), 1 'lJI(k,m 
is bounded as shown by Eq. (II.2). Hence 

1·3·· ·(21-1) Qex~I~II+1 
lim A (~,k) ~ .----
~-+O ~I (1 + I k~1 )1+1 

or A (O,k)=O for all k. 
If ~ is finite, we can use the bound of hl(k~), i.e., 

lim I hl(k~) I = e-x~; (11.3) 
Ikl-+oo 

then 
1 Qlk~ll+1 

lim A(k,~)= lim ----­
Ikl-+oo Ikl-+oolkl (1+lk~I)I+1 

. Q 
= hm-=O. 

Ikl-+oolkl 

A (k,~) approaches, therefore, zero as 1 k 1 ~ 00 every-
where ~ ~ 0 and is continuous. Then 

lim I Fl(k)-11 = lim f ooA 
a,k) 1 VW Id~=O, 

Ikl-- Ikl-- 0 

provided the second condition in the text, Eq. (17), 
is satisfied. This completes the proof of Eq. (II.3). 

The asymptotic formulas (18) and (18') follow also 
from here by noting that the exponential factor in 
Eq. (II.2) in the lower half-plane is e-X'. This together 
with the e-xE in Eq. (II.3) gives e-2x ( 

APPENDIX III. PROOF OF EQUATION (22) 

If SI(k) did have a finite number of poles, it could 
always be written in the form 

SI(k)=PI(k)QI(k), (IILl) 

where PI(k) contains all the zeros and poles other than 
the essential singularity at infinity which is contained 
in Ql(k). Then upon using the unitarity of SI(k), we 
can write PI(k) as 

k- ka * (k- krl) (k+kp) 
PI(k)= IT --IT , 

a k-ka Ii (k-kp)(k+kp*) 

where ka lie on the positive imaginary axis (bound 
states), kp in the lower half-plane off the imaginary 
axis (decay and capture states). 

QI(k) having no zeros and poles except the essential 
singularity must be of the forml6 

QI(k)=cleiGl(k), 

where GI(k) can be either an integral rational or an 
integral transcendental function. Since QI(k) has to 
satisfy unitarity, QI(k)QI*(k) = 1, and symmetry condi­
tions QI(k)=QI*(-k), we get 

cl=±l, 
and 

Gl(k) real and odd function of k. 

From Eqs. (18) and (18') we know that FI*(k) in 
the upper half-plane [or FI(k) in the lower half-plane] 
has the asymptotic factor eick where c is a negative 
number. A rational odd function Gl(k) which behaves 
at infinity as ck must be itself ck. Therefore, 

QI(k) = ±eick, 

and we get Eq. (22) of the text. Thus, this formula is 
meaningful only for finite number of poles. 

16 N. Harkness and N. Morley, Introduction to the Theory of 
Analytic Functions (G. E. Stechert and Company, New York, 
1924), p. 193. 
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Structure of the Many-Channel S Matri:x:*t 
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We are considering the nonrelativistic elastic and inelastic scattering of two particles with internal 
degrees of freedom, or reactions giving rise to two particles. It is shown under very general conditions that 
all elements of the S matrix can be simply obtained from a single analytic function of all channel momenta, 
the Fredholm determinant of the scattering and reaction integral equations. Its properties are investigated 
and the restrictions are established which are necessary and sufficient in order to assure that the unitarity 
condition is fulfilled. The square well and a superposition of Yukawa potentials are considered as examples. 

1. INTRODUCTION 

FOR elastic nonrelativistic scattering of particles 
interacting via local potentials of various degrees 

of generality, the analytic properties of the S matrix as 
a function of the energy, its regularity or lack of it in 
the complex plane, are by now rather well understood. l 

The same cannot be said for S matrices describing 
inelastic processes, i.e., reactions as well. Quite apart 
from the characteristic branch points introduced by 
conservation of energy between channels, there are 
difficulties in continuing the known functions in terms 
of which the S matrix can be simply expressed, even to 
real energies below the highest threshold. 

A recent paper2 by LeCouteur made an important 
contribution which, it turns out, much facilitates the 
understanding of such analytic properties. In the very 
special case of an S-matrix meromorphic in all the 
channel momenta, he showed that there exists a single 
function from which all of its elements can be obtained 
in a simple way. The assumption that, except for poles, 
the S matrix is regular everywhere in the complex plane 
of all channel momenta plays an important role in his 
demonstration; it can, therefore, not be assumed without 
proof to hold in a more general case. Nor is there any in­
dication in his work of the general properties of the 
function or of its connection with the interparticle forces. 

In the present paper the function of LeCouteur is 
exhibited under extremely general conditions. It is 
shown to be the determinant of the generalized Jost 
matrix function introduced earlier by the author.3 
Unfortunately, that matrix function does not have 
simple regularity properties unless the potential is of a 
very restricted class. It is, therefore, significant that it 
is also shown that its determinant is equal to the 
Fredholm determinant of the set of coupled integral 
equations for the scattering wave function; under very 
general conditions it is, therefore, a regular analytic 
function in the whole upper half of the complex plane 
of each channel momentum. Furthermore, its zeros 

• Supported in part by the National Science Foundation. 
t A brief summary of this paper was presented at the Tenth 

Annual International Conference on High Energy Physics, 
Rochester, New York, August 25-September 1, 1960. 

give directly the bound states, and in somewhat more 
restricted circumstances, the resonances. 

The existence of a single analytic function of all 
channel momenta underlying the whole scattering and 
reaction matrix, diagonal elements as well as off­
diagonal, is interesting for a number of reasons. Not 
only does it allow an insight into the structure of the 
S matrix under much weaker assumptions than hereto­
fore necessary, but it may also be a useful tool where 
the unitarity condition makes a direct use of the S 
matrix cumbersome. It is true that for more than two 
channels the equation for the Fredholm determinant 
equivalent to unitarity appears as a rather complicated 
functional restriction; but perhaps it willbe possible in 
the future to understand the implications of this re­
striction a little better and thus to come to a better 
understanding of the functional nature of the unitarity 
condition. 

In Sec. 2 we briefly review the handling of the many 
channel problem introduced in footnote 3. We restrict 
ourselves to discrete channels, i.e., containing no more 
than two particles. The generalized Jost matrix function 
is introduced and all elements of the S matrix are 
expressed simply in terms of its determinant. Section 3 
deals with the Fredholm method. A recursion procedure 
is introduced which allows a straightforward generali­
zation to coupled equations. It is then shown that the 
determinant used in the previous section is identical 
with the Fredholm determinant of the set of coupled 
scattering and reaction integral equations. In Sec. 4 
the properties of this Fredholm determinant are 
exhibited. The necessary and sufficient restrictions are 
derived which take the place of the unitarity of the 
open channel part of the S matrix. Finally the zeros in 
the complex plane are related to bound states and 
resonances. Section 5 contains two examples: The 
square-well potential, and the continuous superposition 
of Yukawa potentials. 

2. SCHRODINGER EQUATION AND S MATRIX 

We briefly outline the procedure of footnote 3 in 
somewhat simplified notation.' The starting point is a 

1 See, for example, the recent review article by R. G. Newton, 
J. Math. Phys. 1, 319 (1960). 4 In order to conform to the more customary notation adopted 

2 K. J. LeCouteur, Proc. Roy. Soc. (London) A256, 115 (1960). here, all matrix equations of footnote 3 must be read from right 
3 R. G. Newton, Ann. Phys. 4, 29 (1958). to left. 
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set of coupled radial Schrodinger equations 

n 

-!h2ma-l~a"+ L 'l)a~~~= 6a~a 
~-l 

for the channel components ~ a of the time independent 
wave function. The "potential" matrix6 'l)a~='l)~a 
contains the (diagonal) centrifugal terms; 6a are the 
channel energies which differ from one another by fixed 
given amounts; and ma are the channel (reduced) 
masses. If we introduce new wave function components 

if;a=ma-hJ!a 

and write 
V a~ =2h-2mat'l)a~~t, 

then the Schrodinger equations read 

-if;a"+L~ Va~~=ka2if;a, (2.1) 
where 

are the channel wave numbers. 
We combine n different column wave functions {if;a}, 

a= 1, ... , n, into a square matrix {if;a~}, a, {3= 1, ... , n, 
and then write (2.1) in matrix notation 

-if;"+ Vif;=lG/t, (2.1') 

K being the diagonal matrix of the channel wave 
numbers. Each column of if; then solves (2.1) and the 
columns differ from one another by their boundary 
condition. 

For the sake of simplicity, we shall restrict ourselves 
to s waves only. The case of higher 1 values and couplings 
between them does not present any difficulties in prin­
ciple but it introduces sometimes bothersome compli­
cations. Furthermore, we assume that all elements of V 
are local, i.e., functions of r, and energy independent. 

The solution6 F(K,r)=F(k1,··; r) is defined by the 
boundary condition 

lim eiKrF(K,r) = 1, (2.2) 
r-+oo 

i.e., more explicitly and less precisely, 

(2.2') 

Thus the {3 column has only an incoming wave in the 
{3 channel and no particles at infinity in any other 
channel. Such a solution is in general irregular at the 
origin. A regular function cf>(K,r) is defined by the 

i The symmetry of the potential matrix V entails the symmetry 
of the S matrix, i.e., the reciprocity theorem. Both follow for a 
suitable choice of phases of the angular momentum functions 
from an assumed time reversal invariance of the interaction 
hamiltonian; see, e.g., footnote 1. 

6 The letter K stands both for the diagonal matrix of channel 
wave numbers and for the set of k's. Sometimes we make things 
more explicit by writing instead (k1,···). 

boundary condition 

cf>(K,O) =0, cf>'(K,O) = 1. (2.3) 

It can be expressed in terms of the two linearly inde­
pendent solutions F(K,r) and 

F(-K, r)=F(-k1, -k2, ••• ; r)7: 

cf>(K,r) = (i/2)[F(K,r)K-lFT ( - K) 
-F(-K,r)K-IFT(K)]' (2.4) 

The matrix function F(K) is obtained by taking the 
Wronskian matrix of F(K,r) and cf>(K,r): 

FT(K) =FT(K,r)cf>'(K,r) 
-FT'(K,r)cf>(K,r)=FT(K,O), (2.5) 

which is independent of r by virtue of the differentiil-l 
equation (2.1') and the symmetry of V. 

The modified scattering matrix is obtained from (2A) 
together with the boundary condition (2.2): 

S'(K) = K-IFT(K)FT-l ( -K)K 
= [rl(-K)F(K). (2.6) 

The last line follows from the boundary condition (2.3) 
inserted in (2.4). The symmetric oS matrix whose open 
channel submatrix is unitary, is related to (2.6) by8 

S(K) = KlS'Kl. (2.7) 

In order to discuss the properties of the relevant 
functions, it is convenient for the time being to dis­
regard the restrictions on the channel momenta imposed 
by the fixed differences between the various channel 
energies. In other words, we regard all the k's as inde­
pendent variables. 

It is clear from the differential equation (2.1') and 
the boundary condition (2.3) that cf>(k1,·· • ; r) is an 
even function of all the k's. It is the unique solution of 
the matrix integral equation 

cf>(K,r)=K-l sinKr+ f.r dr'K-l sinK(r-r') 
o 

X V (r')cf> (K ,r'), (2.8) 

which is always solvable by successive approximations 
provided only that the first absolute moments of all 
elements of VCr) are finite.9 It is then straightforward 
to show that cf>(k1,· •• ; r) is an analytic function of all 
the k's regular in the entire complex plane.9 

The function F(K,r), on the other hand, has in 
general much less regularity. It follows from the 
boundary condition (2.2') that F a~(kl' .. ; r) is an even 

7 The superscript liT" indicates the transposed, "." the complex 
conjugate, and "t" the Hermitian conjugate. 

S The scattering (or reaction) amplitude is obtained from S by 
Eq. (2.15) of footnote 1, where now, of course, Sand e have 
additional channel subscripts and k~k'. The cross section is still 
directly the square modulus of e. 

9 The proof is no different from that in footnote 1 for the one 
channel case. 
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function of all k's, except of k{J; by (2.5) the same then 
is true of Fa{J(k1,")' F(K,r) is the solution of the 
integral equation 

F(K,r) = e-iKT _ f'" dr'K-l sinK(r-r') 
r 

XV(r')F(K,r'), (2.9) 

which is solvable by successive approximations provided 
only that the first absolute moments of V are finite. 9 If 
the second absolute moments of all elements of V also 
exist, then it is straight forward to show9 that 
F a{J(k1,' •• ; r) is an analytic function of k{J regular in 
the lower half of the complex plane, but as a function 
of the other k's it has no general regularity properties 
unless much stronger assumptions are made concerning 
the potential. In other words, we cannot even continue 
all elements of F(K,r) to values of kl' "', kn which 
correspond to a real energy below the highest threshold, 
where one or more of the k's are imaginary. The same 
then holds for F(K), which by (2.5) and (2.9) can be 
written 

F(K) = 1 + £'" drK-l sinKr V(r)F(K,r). (2.10) 

It is a remarkable fact that in spite of this lack of 
regularity of the elements of F(K) the determinant 

f(K) == f(k 1,' •• ) ==detF( - K) (2.11) 

is an analytic function of all k's regular in the whole 
upper half of the complex plane. Thus, although as soon 
as one of the k's leaves the real axis, singularities of some 
elements of F(K) can in general not be ruled out, such 
singularities conspire to make the combination of ele­
ments that make up the determinant, regular in the 
lower half-plane. The proof of this is given in Sec. 3. 

Let us now rewrite (2.6) in the way appropriate to 
the formation of the inverse; 

Thus all diagonal elements of S are obtainable from the 
function f(k 1,' •• ). 

Before proving a similar result for the off-diagonal 
elements, we derive a number of general symmetry 
properties of the S matrix. 

Suppose we define, for a"efl, 

fa{J(K) =L'Y Xa'Y( -K)F'Y{J(K)k{J-l, (2.15) 

so that 
(2.16) 

and 
(2.17) 

expresses the symmetry of the S matrix. X a{J being an 
even function of ka, it follows that f a{J is an even function 
of ka and k{J. Consequently we have by (2.14) for a"efl, 

(2.18a) 

S{Ja'Saa'(k1, "', -ka, ... )= -S{Ja'(k1, "', -ka, ... ). 
(2.18b) 

Furthermore, we evaluate, for a"efl, a"e'Y, 

[X(-K)F(K)f(k1,"', -ka,"') 
-X(-kl, "', ka, ... ) 

XF(k 1, "', -k .. , .. ·)f(k1, •• ')]{J'Y 

once by inserting 

If(K) =F( - K)X( - K) = X( - K)F( - K) 

in the middle and once on the left; 

[ ]fJ'Y=[X(-K)F(-kl, "', ka, ... ) 
XX(-kl' "', ka, .. ,·)F(K)]fJ'Y 
-[X(-K)F(-K)X(-kl, "', k .. , ... ) 

XF(kl, "', -ka, ... )]fJ'Y 
= [XC -K)F(K)]fJa[X( -K)F(K)]a'Y 

= kak'YffJaf .. 'Y' 
which implies that 

P-l(-K)=X( -K)/f(K), 

S'(K)=X( -K)F(K)/f(K). 

(2.12) S{Ja'Sa'Y'(k1,"', -ka,"') 

(2.13) =S{J/-S{J/(k1,"', -ka," .). (2.19) 

Thus X(K) is the transposed of the matrix made up 
of the co-factors of F(K). It follows that X a{J(k1,' •• ) 

is an even function of ko.. 
The diagonal elements of S can by (2.13) be written 

explicitly by developing the determinant 

L'Y Xa')'( -K)F'Ya(K) 

or 

Equations (2.14), (2.18), and (2.19) can be written 
compactly 

S'p(a)S'(k1, "', -ka, ... ) 
=p(a)+S'Q(aLQ(a)S'(k1, "', -ka, ... ), (2.20) 

where p(a) is the projection on the a channel, and 
Q(a) = 1-p(a). This equation contains its own generali­
zation. If we write p(a{J ... ) for the projection on the 
(a, fl, ... ), channels, then it is a straightforward alge­
braic exercise to show by repeated use of (2.20) and its 
version for ka ---t - ka that 

S'p(a{J" ')S'(k 1, "', -ka, -k{J, _ ... ) 
=p(a{J. ··)+S'Q(afJ···) Saa=f(k1, "', -ka, .. ')/f(k1,"') 

=1/Saa (k 1, "', -k .. , ... ). (2.14) _Q(al'''')S'(k1, "', -ka, -kfJ, - ... ). (2.21) 
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The most important special case is obtained by multi­
plying it on both sides by p(a(J ... ): 

p(a(J .. ·)S'p(a(J .. ')S'(k 1 , "', -ka, -k(J, - ... ) 
XP(a(J ... )=p(a(J .. '), (2.22) 

which says that the (a, (3, ••. ) submatrix of 

S'(k!, "', -ka, -k(J, - ... ) 

is the inverse of the (a, (3, •.• ) submatrix of S'.1O 
We now look back at (2.20) or its detailed statements 

(2.14), (2.18), and (2.19). On inserting (2.16) and 
(2.14) in (2.19) for (3='Y and using the evenness of fa(J 
as a function of ka and k(J, we obtain the equation 
[ja(J(k1,' •• )]2 

=[j(k1, "', -ka, · .. )f(k1, "', -k(J, ... ) 
- f(k l ,'" )f(kl , "', -ka, -k(J, ... )]/kak(J (2.23) 

or, equivalently, 

Sa(J2=SaaS(J(J-f(k1, "', -ka, -k{J, ... )/f(k1,"')' 

(2.23') 

Equations (2.14) and (2.23) completely determine the 
S matrix from the function f(k 1,' •• ). [The sign am­
biguity inherent in (2.23) is of no consequence.] 

3. FREDHOLM METHOD 

Before we can prove that the function f(k l ,' •• ) of 
(2.11) is equal to the Fredholm determinant of the 
scattering integral equations, it is necessary to generalize 
the Fredholm method to coupled equations, i.e., matrix 
integral equations. In order to facilitate matters, we 
shall use a general matrix notation also for the "con­
tinuous indices," i.e., for the arguments of the integral 
kernels. The formal development will hold for finite 
matrices as well as for infinite, discrete or continuous 
matrices provided certain convergence conditions are 
fulfilled. 

We want to find the inverse of the matrix 

M=I-aR, (3.1) 

where a is a parameter introduced for convenience. We 
form the inverse in the familiar way by constructing 
the matrix N which is the transposed of the (signed) 
co-factors of M, and divide by the determinant: 

NM=MN=ldetM=IA. (3.2) 

Both N and A are expanded in a power series in a : 

eo 

N=L anN(n), N(O)=I; (3.3) 

eo 

A=L anA(n), A(O)= 1. (3.4) 

We then use the well-known differentiation rule for the 
determinantll ; 

(d/da)A=Tr N(d/da)M= -Tr NR (3.5) 

and evaluate the left-hand side by (3.2): 

-1 Tr NR= -RN+(I-aR)(d/da)N 

= -NR+[(d/da)NJ(I-aR). 

On inserting the expansion (3.3), we obtain the recursion 
relation 

N(n)=RN(n-l)- (l/n)1 Tr RN(n-l) 

=N(n-I)R- (l/n)1 Tr RN(n-J), (3.6) 

while (3.4) substituted in (3.5) leads tol2 

eo an 
A= 1-L - Tr RN(n-I). 

1 n 
(3.7) 

For infinite dimensional matrices, the expansions 
(3.3) and (3.7) together with the recursion (3.6) con­
stitute the Fredholm method for the formation of the 
inverse 

(3.8) 

Usually it is more convenient to write this in the form 

M-I= 1+ (a/ A)NR= 1+ (a/ A)RN=1+(a/ A)Y, (3.9) 

which is readily demonstrated by the use of (3.3), (3.6), 
and (3.7). In that case 

(3.10) 

and the yen) are determined by the recursion 

y(n)=Ry(n-l)_ (l/n)R Tr Y(n-I) 

=Y(n-I)R-(l/n)R Tr Y(n-l), Y(ObR, (3.11) 

while 

or 

00 an 
A= 1-L - Tr yen-I). 

1 n 
(3.12) 

The foregoing procedure is used to solve the equations 

'l' = 'l' o+aR'l' 

U "Tr" stanas for the trace of the matrix, including the con­
tinuous indices. 

12 If M has the finite dimensionality D then, of course, the 
power series (3.3) and (3.4) must break up and reduce to poly­
nomials of degree D-l and D, respectively. It is readily checked 
by (3.6) that a necessary condition for N(m+l) to vanish is indeed 
that D=m+1. Since this condition must also be sufficient we 
find that 

or 
RN(D-I) = l[Tr RN(D-I)]/D 

R-I=N(D-Il[D/Tr RN(D-l)], 

10 This is Peierls' version of the unitarity condition; see R. E. which is a simple recursion method of constructing the inverse 
Peierls, Proc. Roy. Soc. (London) A253, 16 (1959). of a D-dimensional matrix. 
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Equation (3.9) then states that the solution is 

'11='110+ (a/ ~)Y'l1o. 

At this point we may revert to a more explicit notation. 
Let R be a finite matrix of integral kernels. Then (sup­
pressing the finite matrix indices) 

'Ir(r)='lro(r)+a f.«> dr'R(r,r')'I1(r') 
o 

is solved by 
a foo 

'11(1') ='lro(r)+- dr'Y(r,r')'lro(r'), 
~ 0 

where 
«> 

Y(r,r') = L anY(n) (1',1"), 
o 

«> an 1«> 
~=1-L -tr drY(n-l) (1',1'), 

1 n 0 

Y(n) (1',,.') = i eo 
d,."R(,.,r") y(n-l) (,.",,.') 

1 «> 

--R(,.,,,') tr i dr"Y(n-l) (,.",1''') 
n 0 

= ['" d,."y(n-l) (r,,.")R(r",,.') 

1 '" 
--R(r,,.') tr f dr"Y(n-l) (1'",,."), 

n 0 
yeO) (1',1") =R(r,,.'). 

and "tr" now refers to the trace only over the finite 
indices. 

For the type of integral equation arising in scattering 
theory we have 

R(r,r') = S(",r') V (1"), 

where S(r,r') is a "zero order" outgoing-wave Green's 
function. It is then customary to write the solution of 
the integral equation 

'11(,.) ='I1o(r)+ai'" dr'S (1',1") V (1")'11 (1") 
o 

in terms of a resolvent or "complete Green's function": 

'I1(,.)='I1o(r)+a leo dr'@(r,r')V(r')'I1o(,.'). 

Our result then is that 

@(r,r')= 3(r,r')/~, (3.13) 

where both 3 and A are obtained as power series expan­
sions in a (the "potential strength"): 

eo 
3(1',1") = L an3(n) (,.,1") 

o 

eo an Leo 
~= 1-L - tr driJ(n-I) (1',1') VCr), 

1 n 0 

(3.14) 

(3.15) 

and the 3(n) are determined by the recursion 

3(n) (1',1") = leo d,."S(,.,,.")V(,.")3(n-I) (1''',1'') 
o 

1 eo 
--S(r,"') tr f ar"3(n-l) (1''',,.'') V (1''') 

n 0 

= 100 

dr"3(n-l) (",1''') V(,.")S(r",,.') 
o 

1 «> 

--S(r,"') tr f dr"iJ(n-l) (,.",,.") V (,.") , 
n 0 

3(0) (,.,1") = S(,.,,.'). 

(3.16) 

There remains the problem of proving the con­
vergence of the series in a. The recursion method for 
obtaining the Fredholm resolvent and determinant 
outlined above is more convenient and more manageable 
in the matrix case than is the customary way of writing 
them. However, when it comes to the convergence proof 
then the usual explicit solution of the recursion is 
much the more powerful because it allows the use of 
Hadamard's lemma.l3 

We shall write the solution of the recursion (3.11) 
for the case of discrete indices. The continuum case 
differs then only in an obvious notational way. The 
claim is that 

(_)n Ra(3 Raal 
Y a(3(n)=_- L 

n! alo ... • an R?It3 Ralal 

R~n(3 Ranal 
(3.17) 

solves the recursion (3.11). The proof is immediate 
since the development of the determinant in (3.17) ac­
cording to the first row yields 

In the case of matrix integral equations, each index in 
(3.17) comprizes two (or more) numbers, one of which 
runs over a discrete and the other over a continuous 

13 See, for example, E. T. Whittaker and G. N. Watson, A 
Course of Modern Analysis (The MacMillan Company , New York, 
1948), Chap. XI. 
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range. That is why that way of writing the Fredholm 
solution becomes cumbersome. The convergence proofs 
now start from (3.17) in the standard manner.13•14 

The matrix integral equation for the physical s-wave 
scattering wave function is 

if;(K,r)=K-l sinKr 

+a foo dr'g(K; 1',1") V (r')if; (K,r'), (3.18) 

° where 
g(K; 1',1") = - K-l sinKr <eiK,>. (3.19) 

If we take any k into the upper half of the complex 
plane then 9 never gives rise to exponential increase as 
1" ---+ 00. As a result the usual convergence proofs of 
the Fredholm theory13.14 apply there, and it is straight­
forward to see that both 'lJ(K; 1',1") and A(K) of (3.13) 
are analytic functions of all k's regular in the whole 
upper half of each complex plane.16 It follows from a 
comparison of the incoming wave part of the asymptotic 
form of (3.18) and (2.4) that 

if;(K,r)=cp(K,r)[FT( - K)]-l. (3.20) 

A further function needed is G(K,r) which solves 

G(K,r) = eiKr+a foo d1"g(K; 1',1") V (1")G(K,r'). (3.21) 

° 
Since G(K,O)=l and asymptotically G(K,r) has no 
incoming waves, we have 

G(K,1')=F(-K, 1')F-l( -K). (3.22) 

Multiplication of (2.10) by F-l(K) on the right, there­
fore, yields 

F-l(-K)=l-a foo drK-l sinKrV(r)G(K,r). (3.23) 

° 
We now differentiate G with respect to a. By (3.21) 

(d/da)G= gVG+agV(d/da)G, 

the solution of which is 

(d/da)G= ®VG, (3.24) 

since 
®=g+a®vg=g+agV® (3.25) 

is the integral equation for the complete Green's 
function ®. Next we differentiate (3.23) with respect 
to a and insert (3.24): 

(d/da)F-l( -K)= -[if;o+aif;oV®]VG, 
where 

if;o=K-l sinKr. 

14 R. Jost and A. Pais, Phys. Rev. 82, 840 (1951). 
Ii We always assume that all elements of V have finite first and 

second absolute moments. 

A glance at (3.18) shows, therefore, that 

(d/da)F-l( -K)= - foo drif;T(K,r)V(1')G(K,r) 
o 

and consequently, by (3.20), 

tr F( - K)(d/da)F-l( - K) 

= -tr Loo 
drG(K,1')cpT(K,r) VCr). (3.26) 

o 

Now the complete Green's function ® can be repre~ 
sented as16 

{ 
-cp(K,1')GT(K,1"), 1'<1", 

®(K;1',1")= (3.27) 
-G,(K,r)cpT(K,r'), 1'>1". 

Equation (3.26), therefore, says that 

trF-l(-K)(d/da)F(-K)=-tr i<Xl dr®(K;r,r)V(r) 

=-Tr ®V. 

As a result we get for the derivative of the determinant 
of F(-K) 

(d/da)f(K)/j(K)=tr F-l(K) (d/da)F(-K) 
=-Tr ®V, 

or if we define 

Z (K; 1',1") =j(K) ® (K; 1',1") (3.28) 

then 
(d/da)j(K) = -Tr ZV. (3.29) 

We now want to show that the function Z of (3.28) 
is equal to 'lJ of (3.13). We know that both j(K) and 
Z(K; 1',1") can be expanded in convergent power series 
in a: 

00 

f(K) = L an1''') (K), 1'0) = 1; 

° 
<Xl 

Z(K; 1',1")= L anZ(n)(K; 1',1"); 
o 

Z(O)(K; r,r')=g(K; 1',1"). 

Equation (3.29), therefore, states that 

1'n) = - (l/n) Tr Z(n-l)V. 

On the other hand, multiplication of (3.25) by j and 
expansion in a yields 

z(n)=gVZ(n-l)+g1'n) 
=gvZ(n-l)-g(l/n) Tr Z(n-l)V. 

Since that agrees with (3.16), we have Z= 'lJ and hence 

j(K)=A(K). (3.30) 

16 The proof of this is the same as for (9.22) of footnote 1. 
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We have, therefore, the important result that the 
function f(K) in terms of which all elements of the 
S matrix can be expressed by (2.14) and (2.21), is 
identical with the Fredholm determinant of the set of 
coupled scattering integral equations (3.18). 

4. PROPERTIES OF f(K) 

It follows from the boundary condition (2.2) that 
when all k's are real, 

F( -k!, -k2, ... ; r)=F*(kl,k2," ; r) 

and, q,(K,r) being even in all k's and real for real k's, 

F(-kl, -k2, .. ·)=F*(kl,k2,· .. ); (4.1) 

consequently 

f(-k 1, -k2, .. ')=j*(k1,k2," .). 

This implies that in any region of analyticity connected 
with the real axis 

j*(-kl*, -k2*, .. ')=f(k!,k2," .). (4.2) 

Since the Fredholm determinant A is an analytic 
function of all k's regular in the whole upper half of 
each complex plane, so is f by (3.30), and (4.2) must 
hold in the upper half-plane. 

A rather more complicated property of f follows from 
the off-diagonal elements of (2.19). On taking (3~'Y, we 
obtain 

fitJ,,(k l , ... , -ka, ... )=f(k l , ''', -ko., ... )/tJ"( 
-kafatda"(. (4.3) 

On inserting (2.23) in this we obtain, after squaring, an 
explicit expression for f(k l , ., " - ka;, - kp, - k,,(, ... ) 
in terms of f with only one or two k's changed in sign: 

j2gaP'Y= f(gagP'Y+gpg'Y",+g"(gap)-2g,,,gpg,,( 
+2[(g",gp-gapf)(gpg"(-gp'Yf)(g'Yg,,,-g'Yaf)]t, (4.4) 

where 
ga=f(k l , ... , -ka , ... ), 

gaP = f(k l , ••• , - ka, - kp, ... ), etc. 

This equation, which comes into play only for three or 
more channels, together with (2.14) and (2.23), is 
equivalent to (2.21) and hence implies equations (2.22) 
for all choices of submatrices. 

There remains the questions of the unitarity of the 
S matrix. Suppose that ka, kp, .. , kx are positive real 
and all other k's are positive imaginary. Then we can 
use (2.14) and (2.23) and (2.16) to form Sa/, where 0 
and 'Yare among the a, (3, •. , A. Equation (2.22) then 
implies that 

p(ap .. ')s'p(ap .. ')S'*p(ap ... )=p(ap .. '), (4.5) 

and consequently by (4.7) and its symmetry, that the 
open-channel submatrix of S is unitary: 

p(ap .. ')SP(aP" ')Stp(ap ... )=p(ap .. . J, (4.6) 

provided that 
Sh'(-K*)=Sa/(K). (4.7) 

Of course, this property follows from (4.1); but if we 
construct the S matrix via (2.14) and (2.23) we must 
be sure that it is indeed satisfied. Because of (4.2), Eq. 
(2.16) shows that (4.7) holds if 

h'Y*(-K*)=-fh(K). (4.8) 

It follows from (2.23) and (4.2) that 

Uh( - K*)]2*= Uh(K)]2; 

but (4.8) is more stringent. 
It is clear from the unitarity (4.6) that (2.14) implies 

the inequality 

If(k l , "', -ka, .. ')1 ~ If(k!, .. ')1 (4.9) 

for real positive kQ and all other k's either positive or 
positive imaginary. Suppose we take k", and kp positive 
and all other k's positive imaginary; then (4.2) and 
(2.23) lead to 

ka kpf",p2= If(k!, ''', -k"" . .. )j2-lf(kl , ")1 2, 

which by (4.9) is negative. As a result (4.8) is indeed 
fulfilled and the unitarity condition holds. In other 
words, (4.9) implies (4.8) for k8 and k"( real and all 
other k's positive imaginary. Next we move kIT off the 
imaginary axis. Both sides of (4.8) being analytic 
functions, the equation must continue to hold. It must, 
therefore, hold also when kIT is real. This operation may 
be repeated. As a result the set of inequalities (4.9) is 
all that is necessary in order to assure (4.8) and hence 
the unitarity condition. 

A final property of f(k l ,' •• ) is readily shown by the 
Fredholm procedure,16 If all k's are kept either on the 
real axis or in the upper half of the complex plane, then 

lim f(kI,·")=1. (4.10) 
Ikll,lk21.·· . ......, 

These are all the restrictions on f. Equations (4.2) 
and (4.4), and the inequalities (4.9) are necessary and 
sufficient conditions (together with the regularity 
property off) in order that (2.14) and (2.23) lead to a 
symmetric and unitary S matrix. Equation (4.10) is an 
additional property that leads to S= 1 at infinite energy. 

Equations (2.14) and (2.23) allow in general the 
construction of the open-channel part of the S matrix 
only. In other words, SaP, Sa a, and Spp are in general 
well defined only if ka and kfJ are real and all other k's 
are either real or positive imaginary. In order to define 
S in a larger domain, f would have to be continued to a 
region where some k's are in the lower half plane. There 
we know nothing about its behavior. However, if the 
potential matrix V is known to satisfy more stringent 
conditions than assumed so far, then f may be shown 
to have a larger region of regularity. The situation is in 
that respect just as in the simpler case of a single 
channel,1 If all elements of V vanish at infinity more 
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strongly than exp( - 2f.Lr ) , then j(k1,·· .) is regular 
also in a strip of width f.L in the lower half-planes of 
all k's. If all elements of V vanish identically beyond a 
finite point, then j(kl' ... ) is regular for all finite kl' 
k2, .... 

We now want to discuss the significance of the zeros 
of j in the upper half plane. For that purpose it is con­
venient to consider the function 

H(K,r) =F( -K, r)X(-K)=G(K,r)j(K), 

which solves (2.1') and the integral equation 

H(K,r) = j(K)eiKr 

+ £'" dr'g(K; r,r')V(r')H(K,r'). (4.11) 

It can therefore be written 

H(K,r)=j(K)eiKr+ £'" dr';J(K;r,r')V(r')eiKr'. (4.12) 

For fixed r, H is an analytic function of all k's regular 
in the upper half-plane!5 of each k. It is also uniformly 
(in r and all k's) bounded in the upper half plane of all 
k's. 

Suppose then that 

j(Kt,K2, .. ) = 0 

at a point (Kl,· .. ), where all K'S are either positive or in 
the upper half-plane. We can establish at once that 
this cannot happen when all K'S are positive, for then 
there must exist a set of numbers CfJ so that 

LfJF-yfJ(-K)cll=O foralll' 

and by (4.1) 
LfJ CfJ*[FT(K)]fJ-y=O. 

But we can easily evaluate the Wronskian matrix for 
F(K,r) and F( - K, r) at infinity and at zero: 

FT(K)F' (K,O)- FT'(K,O)F( - K) = 2iK, 

multiplication of which on the left by {CIl*} and on the 
right by {cll} then yields 

LfJicfJI2KfJ =0. 

This is impossible if all K'S are positive. 
Now, then, for k1=Kl, k2=K2, ... , by (4.11) H(K,r) 

vanishes at r=O; it is a regular wave function. As 
r---+ 00 we have the following situation: Forl7 1m Ka>O, 
we obtain from (4.11) 

1 { r HafJ ,...., -.- i dr'ei",,(r-r'l[V(r')H(K,r')]all 
r-+'" 21Ka 0 

17 "Re" and "1m" denote, respectively, the real and imaginary 
part of a number. 

which is square integrable. For 1m K-y=O, we write 

H'"(Il=ei""yrX-YIl( - K) 

-K'"(-lj'" dr' sinK-y(r-r')[V(r')H(K,r')]-yIl, 
r 

where by (2.10) 

X'"(Il( -K) =o-yIli(K)- k-y-l £'" dr sink,"(r[V(r)H(K,r)J.YfJ 

which exists for real k-y and all other k's real or in the 
upper half-plane. Moreover, if k-y is positive and all 
other k's are either positive or positive imaginary, and 
j=O, then X-yll(-K)=O for all {j. That fact is easily 
shown by evaluating the Wronskian matrix for Hand 
H* once at r=O and once at r= 00. When all k2 are real, 
we obtain 

1* (K)H' (K,O) - j(K)Ht' (K,O) 
= -iXt (-K)RKX (-K), 

R being the projection on the channels with real k's. 
Hence ifj(K)=0 then 

Xt(-K)KRX(-K) =0, 

and consequently, if all the real K'S are positive, then 

X-yfJ(-K) =0 
for all (j. 

In other words, when j(KI, ... ) = 0 at a point (Kl,· .. ) 
where each K is either real or has a positive imaginary 
part, then there is not, in general, a bound state; but 
if that happens at a point where each K is either positive 
or positive imaginary, then we have a bound state. If 
all K'S are positive imaginary then the bound state is of 
the type usually considered: all channels are closed. 
If some are real, then the bound state is "embedded 
in the continuum" a state of affairs discussed at length 
in a recent paper by Fonda and Newton.!8 Finally, if 
the forces that would lead to a bound state of the latter 
type are slightly altered, then the zero ofj, with all but 
one, say, of the K'S fixed, will move off the imaginary 
axis and cause a resonance (in the absence of other 
disturbing nearby singularities of the S-matrix).19 

5. EXAMPLES 

Square Well 

Assume that for r<ro the potential matrix V is 
constant and for r>ro, it vanishes. We write (2.1') 

If''+Alf=O, 

18 L. Fonda and R. G. Newton, Ann. Phys. 10,490 (1960). 
19 An analytic function of n variables vanishes on an (n-1)-di­

mensional complex hypersurface. Insertion of energy conservation 
among all the K'S generally eliminates the zero altogether after the 
perturbation. But if between two groups of K'S the energy conserva­
tion is relaxed, then the zero is retained and moves generally off 
the real axis. That is the state of affairs treated from a somewhat 
different point of view in footnote 18. 
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where 

{
K.2- V, 1'<1'0, 

A= 
K.2, 1'>1'0. 

We diagonalize the matrix A for 1'<1'0: 

A=Ta2T-r, 

where a2 is the diagonal matrix of the eigenvalues of A. 
The solution F(K,r) must be of the form 

. {T(eia'B+e-ia.C), 1'<1'0, 
F(K,r) = 

e-iK., 1'>1'0. 

The constant matrices Band C are determined by the 
requirement of continuity of F(K,r) and of its first 
derivative. We find that for 1'<1'0 

F(K,r) = [T cosa(r-ro)T-1 
-iTa-1 sina(r-ro)T-1K]e- iKro, 

and therefore, 

F(K) = [T cosaroT-l+iTa-1 sinaroT-1K]e- iK•o 

= Ta-1 sinaroT-1[Ta cotaroT-l+iK]e-iKro, 

so that 

f(K) = [ll" eik"rOllia.-1 sina,ro] 
Xdet[Ta cotaroT-1-iK]' 

If we take the case of two channels and set 

then 

and 

where20 

ei=a,"-O, Pa=k",ro, 

Ra=A"a1ro= (Pa2- Vaaro2)t, 

ei{Pl+P2) Sinel sine2 
f(k l,k2) =--.-.-. g(Pl,P2), 

a2-al el e2 

g (Pl,P2) = iPl ( (~hal- e~2) +iP2 (e~l- ~·ha2) 

+ (al-a2)(P1P2- ele2) 
with 

al =el2- R I2=R22- e22, a2=e22-Rl2=R22_eI2, 

e1 = el cote 1, e2 = e~ cote2' 

The S matrix is given by 

Sn 
g( -PI, P2) ____ e-2ip1 

g(Pl,P2) , 

g(p1' -P2) ____ e-2ip2 
g(Pl,P2) , 

2 (el- e2) (ala2PIP2); 
S12=S21 e-'(Pl+P2). 

g(Pl,P2) 

Potentials of the Yukawa Type 

Suppose 

V (1') = f dp,p(p.)e-I", 

where P is a matrix and Pap(J.4) =0 for J.4:::; Uoap. Then 

R(K; 1',1") = - K-l sinKr <eiK.> f dp.pCJ.4)e-I"'. 

It will be advantageous to do everything in Fourier 
transform language: 

1 .. .. 
R(K; k,k')=- f. dri dr'e"<re-ik"'R(K; 1',1") 

2'1/" 0 0 

Then 

=~ fdp.(K+k)-l(k+ip.-k')-1 
27ri 

X (k' - K -ip,)-lpCJ.4). 

1 J dP,f" Tr R(K) = -- - dk tr(k+K)-l 
2'1/" p.--«> 

X (k- K -ip,)-lp(p.) 

f 

dp. 
= -i --;; tr(2K +ip.)-lpCJ.4) 

J
dp, 

=-i - L:(2k"+ip.)-lp,,,,(p.). 
p. a 

So as a function of ka there is a branch line along the 
negative imaginary axis, starting at ka= -lip.oa,,' 

In order to find the singularities of yen) we must, 
according to (3.6), look at Tr Rn+l ; the term R Tr y(n-l) 
gives no new singularities. 

We need, then, R2: 

1 00 dk" 
R2(k,k')=-- fdJ.4fdp.'f . (k"-K-ip.)-l(k+K)-l 

(27ri)2 -00 (k"-k-ip.)(k'-k"-ip.') 
xpCJ.4)· (k' -K -ip,')-l(k"+K)-lpCJ.4),. 

All integrations in the trace are readily done and we obtain after some algebra: 

f f 
k,,+kp+iJ.4+ip,' 

Tr R2(K) = -2i dp, dp,' L: p"pCJ.4)PPa(p.') . 
ap (J.4+p,') (2k,,+ip.+iJ.4') (2kp+ip,+ip.') (ka+kl/+ip.) (k,,+kp+ip.') 

20 This is the function F of (5.8) in footnote 18 which contains a sign error. Otherwise the notation is the same. 
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The only new branch line comes from 

or the same with p. ~ ip.'. That branch line starts at 

k(3(O) = -i(p.oa;+2ma.:la/l) 

X {P.Oa~+ (ma/m/l)t[p.Oa/i2- 2.:la/i(m/i-ma)]!}-l, 
where 

The branch line extends along the negative imaginary 
axis only, provided that 

(A) 

otherwise it runs partly parallel to the real axis. 
Since the branch lines arise simply from the coin-

cidence of singularities in the original integrands, it is 
clear that the branch lines of Tr R2 are the only ones 
that will occur in Tr Rn and hence in the nth term of 
the expansion of the Fredholm determinant. We may 
conclude that .:l(k1,···), considered as an over-all 
function of k{J, i.e., with all k's expressed as functions 
of k{J, has a branch line along the negative imaginary 
axis from k{J(O) on, provided that (A) is satisfied for all 
P.Oaf3. In addition, there are the usual branch points 
coming from the energy conservation between channels; 
but those lie, of course, necessarily on the real and 
imaginary axes. 

We finally form the S-matrix elements from .:l by 
(2.14) and (2.23). Then one or two of the k's must 
change sign. As a result we get branch lines also along 
the positive imaginary axis. The criterion for branch 
lines on the imaginary axis only remains (A). 
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Products of Principal Value Singularities Used in the Formal Theory of Scattering* 
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A mathematically neat derivation is given of the relation between the S matrix and the transformation 
function for a finite time. It is shown that one can dispense with the adiabatic switching on and off, and 
yet one reaches the same result as when one employs it. Necessary conditions are discussed for the validity 
of this statement. Systematic prescriptions are given of handling products of principal value singularities, 
which is relevant to the scattering theory in momentum space. 

I 

T HE best way to understand the nature of a 
propagator as used in the quantum theory of 

scattering, both in field theory and in ordinary quantum 
mechanics, is to consider it as the boundary value of 
some analytic function. l Once one admits that the use 
of such a propagator is well founded, one can proceed 
formally in the scattering theory if a set of consistent 
rules is introduced which disposes singularities in 
momentum space in terms of the delta functions and 
principal values. 

It was pointed out recently2 that Eqs. (1)-(4) as 
given in the following playa key role in the so-called 
synthetic or inverted approach in quantum field 
theory, so far as one agrees to proceed along the line 
first mentioned. The advantage of such an approach is 
that one establishes the quantization even when some 
phenomenological form factor is introduced. The value 
of such a form factor is somewhat questionable as the 
final theoretical tool to be used in the explanation of 
the properties of elementary particles. Nevertheless, 
one can emphasize the importance of studying the 
local field theory as the limit of nonlocal form factor 
theory. Also, one can show that the relations (1)-(4) 
provide a clear-cut division between off and on the 
energy shell of a transition amplitude, however com­
plicated a problem may be. 

The relations to be established are as follows. Define 
the unitary transformation function for a finite time 
Xo by 

u(xo)=exp[~ f""t(XO,yo)F(Y)d4y]=eXP[iG(Xo)], (1) 
2 -00 

in terms of a step function 

{
+1 

E(a,b) = 
-1 

for 
a>b 

a<b 

* This work is supported by the Air Force. 
t On leave of absence from Tokyo University of Education, 

Tokyo, Japan. Present address: Physics Department, New York 
University, University Heights, New York 53, New York. 

1 Cf. e.g., G. Kallen and A. Wightman, Kg!. Danske Videnskab. 
Selskab, Mat. fys. Skrifter 1, No.6 (1958); there is quite a lot of 
literature on the dispersion relation. 

! S. Tani, Phys. Rev. 115, 711 (1959); J. Math. Phys. 2, 46 
(1961). 

and an operator F(x) defined at a point x in space-time. 
The translation of the system, say, from the time tl 
through 12, is conducted by the transformation function 

(2) 

The S matrix is given then by 

(3) 

with the same operator F(x) as in (1). If we assume 
the adiabatic switching on and off,S we can establish (3) 
by substituting (1) into (2). That is to say, we can put 

S= lim U(t2,lI). 
t2-+oo t h--+-oo 

(4) 

This means that the S matrix is defined as the transla­
tion operator from - 00 through + 00 in time. We are 
interested first in establishing (1)-(4) without recourse 
to the adiabatic switching on and Off.4 The validity of 
(1)-(4) imposes some restriction on the property of 
F(x), as a matter of fact. This restriction is stated in 
Sec. II. 

If one employs the momentum representation, Eqs. 
(1)-(4) require that a product of principal values 
must be carefully treated. This is known in the case of 
a product of two principal values. The following 
equality is known under the assumption of regularity of 
the matrix element of F as a function of energy: 

X (p_1_+p_l_) }=o, 
E,.-Eo Eb-Ee 

(5) 

3 As an example one can refer to Eqs. (3.6) and (3.7), p. 1618, 
in M. Cell-Mann, M. L. Goldberger, and W. E. Thirring, Phys. 
Rev. 95, 1612 (1954). 

4 This is known in the case of scattering by a finite-range and 
regular potential. See N. Levinson, Kg!. Danske Videnskab. 
Seiskab, Mat. fys. Medd. 25, No.9 (1949); J. M. Cook, J. Math. 
and Phys. 36, 82 (1957); J. M. Jauch, Helv. Phys. Acta 31, 661 
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where Ea denotes the energy in the state a. Out of four 
terms appearing in (5), one cannot perform the integra­
tion over Eb earlier than over other variables in the 
first term; however, one can define such an integral as 
the combination of three other terms. It is assumed that 
a matrix element (a I Fib) is regular enough as a function 
of both Ea and Eb so that a multiple integral of a 
product of F with a principal value is well defined if 
performed in a suitable order. The situation in which 
the number of principal values is larger than two is 
studied systematically in Sec. III. 

II 

Let us first define the Hamiltonian as the generating 
operator of an infinitesimal change in time. It is defined 
by 

i[ dO (t)/dt]=H(t)O (t). (6) 

It is given actually by 

H(t)=i{!....- OCt) .!..... O(t)-I} 
dt dt 

= - f d3x{F(x) + (1/2 !)[F(x), -iG(xo)] 

+(1/3 !) [[F (x) , -iG(xo)], -iG(xo)]+···}. (7) 

In the following we suppress the integration over 
space coordinate in order to shorten the notation. Let 
us consider ~he operator [(±) (t) which is defined by 

[(±) (t) = 0 (t) . expl-±~ Jco F(X)dX]. 
2 -co 

(8) 

If one admits (9), it is evident that we must put 

lim [<+) (t) = 1. 
I-+-CO 

(11) 

Equation (11) establishes the consistency of the 
definition 

,~eXPG L:E(t,X)F(X)dX] 

=exp[-i fcoF(X)dX]. (12) 
2 -co 

In this way we can dispense with the adiabatic switching 
off, and yet we reach the same result as when we use it. 
The limit t ~ + 00 of 0 (t) can be established in a 
similar way. When both limits, t2 ~ + 00 and tl --+ - 00 

are combined in U(t2h) we establish (4). 
Now, Eq. (9) can be established by expanding both 

sides into powers of F(x) and by comparing them at the 
same order. We denote an order of the expansion by a 
suffix. Accordingly, we write 

CD 

[(+)(t)=1+ L: [n(+)(t), (13) 
n-1 

and 
co 

H(t)= L Hn(t). (14) 
n=1 

Also we write for the right-hand side of Eq. (10) 

The most essential step in the proof is to show, for an As a result of the definition given by (10), we have 

arbitrary but finite t, that J ,,+!(+) (t) 

[(±)(t)=p( exp[-i L~ H(x)dx ]), (9) 

where the Hamiltonian H(t) is defined in (7) and Pis 
the Dyson's chronological ordering operator,· namely, 
the right-hand side of (9) is the shorthand notation for 

=1-ii' H(X)dX+(-iPit H(x)dx 
-00 -~ 

x L: H(y)dy+···. (10) 

(1959); and other papers quoted in them. We reformulate the 
problem here in order to make our results applicable to wider 
classes of problems than potential scattering. See the next to the 
last paragraph in Sec. II. 

~ F. J. Dyson, Phys. Rev. 75, 486 (1949); see p. 492. 

Suppose Eq. (9) is established up to the order n. We 
have to see the condition under which Eq. (9) holds for 
the order n+1, namely, 

J n+1(+) (t) =[ n+1(+) (t). (17) 

From (7) and (1), we have 

m 1 
XF(x m) L: e(x1,t)· .. 

j-1 (j-l) !(m- j+l)! 

Xe(xj-l,t)e(t,xj+!)· .. E(t,Xm)a(t-Xj), (18) 

where there are (m-1)e's for all j. From (8) and (1), 
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we have 

I m(+>(t)= (~) mf~dXl" . f~dXmF(Xl)' .. 
1 

XF(xm) L -----­
i-I (j-l) !(m- j+l)! 

X ~(t,Xl)~(t,X2)' .. E(t,Xm-i+l), (19) 

where the jth term is a product of only (m- j+ 1)~'s. 
If we substitute I met) given by (19) and H met) given 
by (18) for m up to n on the right-hand side of (16), 
it turns out that the necessary condition for the 
validity of (17) is that the following condition holds for 
an m-times product of F(x) for all m up to n+ 1: 

X E (Xj,X2) ... E(Xi,Xj-l)E(Xj,t)E(Xj,Xj+l) ... E(Xj,X m) 

+E(t,Xl)E(t,X2)' .. E(t,xm)+D(m)} =0, (20) 

where mE's appear in each term and the constant D(m) 
is given by 

D(m) = { 0 
-1 

and t is arbitrary but finite. 

if m is odd 

if m is even, 
(21) 

It is not difficult to see that the expression inside 
the curly brackets in Eq. (20) vanishes almost iden­
tically, namely, we have 

m 

L E(Xj,Xl)' .. E(X;,Xj_l)E(X"t)~(X;,Xi+l)' .. E(X;,Xm ) 
i-I 

except when several points coincide. The exception 
arises because a step function is not defined when its 
arguments coincide. 

In order to see that validity of Eq. (22), let us first 
observe that the left-hand side of (22) is invariant 
against any permutation of the m+ 1 points, t through 
x m• This means that we have only to verify the identity 
for any arrangement of the m+ 1 points which is con­
venient; we should get the same result for any other 
arrangement of m+ 1 points. One can easily see Eq. (22) 
to hold when the arrangement of m+ 1 points is such 
that 

t>Xl>X2>" . >xm • 

On coming back to the validity of Eq. (20), we see 
that it is established if the operator F(x) is regular 
enough such as: 

(i) The integration over x with a step function E(tX) 
as a weight is well-defined for an arbitrary but finite t. 
This means that the contribution from x= t does not 
introduce any difficulty but can be simply neglected. 

(ii) The mUltiple integral converges uniformly, 
when the integrations are made according to the order 
specified by the number of times by which each variable 
appears. In the jth term as appears in (20), the integra­
tion over Xj should be performed at the end, the order of 
integration over other variables should be interchange­
able among them. 

Given a particular F(x), one may raise the question 
as to whether the conditions mentioned above are 
satisfied for such a particular F(x). We do not go into a 
systematic investigation of a sufficient condition for 
the validity of our key equations (1)-(4).4 It consists 
of two problems: (i) find the sufficient condition for 
the validity of (20) or (27) and its generalization, and 
eii) find the sufficient condition for the convergence of 
the expansion into powers of F(x). The solutions to 
these problems are very valuable, especially when they 
are formulated in momentum space. 

Finally we should have shown how to prove (17) 
when (18)-(20) are used. Since this is a straightforward 
algebraic calculation which involves only handling a 
number of binomial coefficients, we only assert our 
result and skip to give a detail of such a calculation. 

III 

It is to be remarked that when one introduces the 
momentum space representation, Eq. (20) formulates 
a set of rules for handling a product of principal value 
singularities. Let us write the matrix element of F(x) 
between two states, say, a and b, in momentum space as 

(aIF(t)lb)=(aIFlb) exp[-i(E .. -Eb)t]. (23) 

Recall that the following symbolic calculations are 
valid under the regularity conditions as discussed in 
Sec. II: 

f'" exp[ -i(E .. -Eb)x]dx=27rfJ(E .. -Eb), (24) 
-'" 

f'" !E(t,X) exp[ -i(Ea- Eb)X]dx 
-'" . 

t 
=exp[ -i(E .. -Eb)t]P--. (25) 

Ea-Eb 

Substitute (23) into (20) and perform the integration 
according to (24) and (25). Then, we have an equation, 
which is valid as a distribution equation among products 
of principal values. 

Let us quote an example for which m= 2. Equation 
(20) in this case specifically reads 

f"'dX f'" dyF(x)F(y){ E(tX)~(tY)+~(Xt)E(XY) 
-'" -'" +E(yt)~(yx)-I}=O. (26) 

When we calculate the matrix element between states, 
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say, a and e, we have the following results: 

< al L: !t(tx)dx L: !t(ty)dyF(x)F(y) Ie) 

= (al FI b)(b I FI e)·exp[ -i(Ea- Ec)t] 

p p 
. (i)2_---, (27a) 

Ea-EbEb-Ec 

< a/ L)t(xt)dX f~ !t(xy)dyF (x)F (y) I e) 

= (a I F I b)(b I F I e)· exp[ -i(Ea- Ec)t] 

1 1 
.p--p-- (27b) 

Ea-Ec Eb-Ec' 

< al f~!t(yt)dY i)t(YX)dXF(X)F(y) I e) 

= (al FI b)(b I F I e)·exp[ -i(Ea-Ec)t] 

1 1 
.p--p-- (27c) 

Ea-Ec Ea-Eb ' 

< alf~!dX f~!dYF(X)~(Y)le) 
=(aIFI b)(bIFI e)1r2o(Ea- Eb)O(Eb- Ec), (27d) 

respectively, in the order as they appear in Eq. (26). 
One should be careful to keep a proper order of integra­
tion so that the integral is meaningful. In writing the 
preceding results, the integration over the density of 
the intermediate state b is suppressed. When (27a)-

(27d) are summed up, we see that the relation (5) 
mentioned in Sec. I is established. 

In this way, if represented in momentum space, 
Eq. (20) will provide a systematic method of exploring 
the products of principal values in general situations 
such as are encountered in the scattering theory. 
Actually the rules defined in this way reproduce all of 
the rules used in our earlier publications.2 They were 
formulated by a more primitive method. In that method 
one starts with 

p---"-'----­
Ea- Eb (Ea- E b)2+t2 

E 
1ro(Ea- E b),,-, , 

(Ea- Eb)2+e2 

and takes the limit e ---+ 0 at the end. 
In conclusion, we have established that if the 

regularity conditions formulated in Sec. II are satisfied, 
the adiabatic switching on and off can be justified as 
the conventional means to derive the right result. We 
have dealt with only the exponential form of a unitary 
transformation function. This is made in connection 
with its usefulness, since the exponential form is unique 
in that we can ignore processes which are represented 
by reducible diagrams. As far as justification of the 
adiabatic switching is concerned, we can treat the 
other types of transformation function equally well. 
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A classification of four-dimensional Riemann spaces with signature +2 is given. The classification depends 
upon the differential as well as the algebraic properties of the Riemann tensor. The tool employed is the 
infinitesimal-holonomy group of the space. An introduction to the concept of the holonomy group is given, 
and the technique of classification is outlined. A comparison with the classification of empty spaces given 
by A. Z. Petrov and with the recent work of E. Newman is also given. 

1. INTRODUCTION 

A CLASSIFICATION of Einstein spaces according 
to the eigenbivectors of the curvature tensor has 

been given by Petrov.1 This classification depends only 
upon the algebraic properties of the curvature tensor 
and does not take into account its differential properties. 
The present paper gives a classification of general 
V 4's with signature +2 [V4 ( +++ - )'sJ which is based 
on the theory of the infinitesimal-holonomy group (ihg) 
for a V 4. This theory involves not only the curvature 
tensor but also brings in all of its covariant derivatives. 
Thus we are led to a classification of V 4(+++- )'s 
which brings in the differential as well as the algebraic 
properties of the curvature tensor. 

We begin (Sec. 2) by introducing the concept of an 
ihg for a general V n, and indicate its relation to rotation 
groups. This is followed (Sec. 3) by an elementary 
discussion of continuous rotation groups in an n­
dimensional flat space. We then return (Sec. 4) to a 
further discussion of ihg's in a general V n. The classifica­
tion of V 4(+++- )'s is obtained (Sec. 5) from a 
classification of rotation groups in ~ four-dimensional 
flat space. Specialization to Einstein spaces is then 
discussed (Sec. 6), and, finally (Sec. 7), the relation of 
this classification to that of Petrov and the work of 
Newman2 is treated. 

2. INFINITESIMAL-HOLONOMY GROUP FOR AN 
ANALYTIC REGION RcVn 

We denote by V n an n-dimensional Riemann space. 
Let P be a point in an analytic region RC V n, in which 
the Christoffel symbols are also analytic. Let C be a 
closed curve in R which can be continuously shrunk to 
a point in R and which passes through P. The vector 
transformation at P which is generated by parallel 
displacement (of the set of vectors at P) around C will 
be a rotation. The set of all such curves C in R will 
give rise to a set of rotations at P. It can be shown that 
this set of rotations actually forms a connected con­
tinuous group,3.4 the group called the infinitesimal-

1 A. Z. Petrov, Sci. Note Kazan State Univ. 114,55 (1954). 
2 E. Newlnan, J. Math. Phys. (to be published). 
8 A. Nijenhuis, Koninkl. Ned. Akad. Wetenschap. Proc. Ser. A 

56, 233, 241 (1953). 
4 J. A. Schouten, Ricci Calc1dus (Springer-Verlag, Berlin, 1954), 

p. 361 ff. 

holonomy group of V nat P. It is also easily shown that 
the same abstract group obtains at each point of R, so 
that we may speak of the ihg of RC V n. 

Since the ihg is a rotation group in the (flat) tangent 
space to V" at P, it is profitable at this point to digress a 
bit and discuss the properties of a general group of 
rotations in an n-dimensional flat space. 

3. ROTATION GROUPS IN AN n-DIMENSIONAL 
FLAT SPACE 

Let ~K (K=I, "', roman numeral n) denote a set of 
coordinates in an n-dimensional flat space. Consider a 
group of rotations about the origin of this coordinate 
system. It is known that the group germ (that is, the 
set of elements of the group which can be continuously 
transformed into the identity) is also a Lie group and 
will have its transformations expressible in the form 

(1) 

where 1/" denotes the coordinates of the point into which 
~" is rotated and X is an operator of the form 

the 
(2) 

(3) 

being components of a bivector in the space. The 
infinitesimal transformation 

1/K= ~K+ LA K~Adt 

= (1+Xdt)~K, (4) 

obtained from Eq. (1) by neglecting higher-order terms 
and, for purely notational reasons, by replacing t by 
dt, is said to generate the set of transformations in 
Eq. (1). The operator X is called the generator of the 
transformations; the tensor LA< is called the generating 
bivector. In the remainder of this discussion, we confine 
our attention solely to the group germ. 

Because of the bivector character of LA<, the rotation 

6 Throughout this paper the sumtnation convention is used with 
respect to all types of indices. Bracketed indices, for example, 
[a,B], indicate skew-symmetrization. 

202 
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group can have at most n(n-l)/2 independent 
generators [see Eq. (2)J, or independent generating 
bivectors [see Eq. (3)]. The number r of independent 
generators is referred to as the number of parameters 
of the group. 6 If the only element in the group is 
the identity, we shall say that the group has zero 
parameters. 

Consider now an r-parameter group G, 

o <r~ n(n-l)/2. 
Denote by 

Lp",{J, p= 1, "', r (5) 

a set of r independent generating bivectors. Then every 
bivector 

L",{J=cPLp"'{J (cP=const) (6) 

will generate a one-parameter subgroup of G. Moreover, 
every element of G is generated by an L",(J in the form 
of Eq. (6) with uniquely determined cPo 

The generators corresponding to Eq. (5) are 

X p=Lp~·f'(a/a~·). (7) 

From this equation and the Lie structural formulas 
for continuous groups, 

2X[pXqj=X pXq-XqX p=cpqrXr 

(Cpqr=C[pq{), 
(8) 

we obtain the following commutation identity for the 
generating bivectors: 

Lpa(JLl'Y-Lqo.{JL/'Y=Cpq'Lr",'Y' (9) 

This relation is very important for the classification of 
n-dimensional rotation groups and hence for the 
classification of ihg's. Ultimately, the classification 
rests on the well-known second part of the second 
theorem of Lie. 

A necessary and sufficient condition that a set Lpo.{J 
(p= 1, ... , r) of r bivectors be a complete se(1 of generating 
bivectors for a group (of rotations) is that the relations 
in Eq. (9) hold. 

4. INFINITESIMAL-HOLONOMY GROUP OF AN 
ANALYTIC REGION RcVn (CONTINUED) 

Since the ihg of a region RC V" is a group of rotations 
at a point P, it will possess generating bivectors which 
have all of the properties described in the preceding 
paragraph. Moreover, these bivectors are intimately 
related to the curvature tensor.3.4.8 Indeed, a complete 
set of generating bivectors Lp~v for the ihg spans the 
same set of bivectors as do 

Rab~v, V xlRab~., ... , V Xp· •• V xlRab~v, ... (10) 

(a, b, Xi= T, ... , ii). 
6 For n=4, a rotation group can have at most 4(4-1)/2=six 

independent generators and, henc~ at most six parameters. 
7 A set of bivectors [see Eq. (5) J is said to be a complete set of 

generating bivectors of a group G (of rotations), if every generating 
bivector of the group can be expressed in the form of Eq. (6). 

8 V. Hlavaty, J. Math. and Mech. 8, 285, 597 (1959); 9, 89, 
-453 (1960). 

The bivectors in Eq. (10) are obtained from the 
curvature tensor and its derivatives by contraction over 
all but the AP indices with the vectors ea'" (a= T, ... , ii) 
of an arbitrary ennuple. (The indices a, b, Xi are merely 
labeling indices for the different bivectors.) Thus, we 
have 

Ra{J'Y6 = Mqa(JLq'Y6, 

and similar relations for the covariant derivatives of 
R",{J'Y6. It can be shown3•4 •8 that MP",(J= hpqLq'Y6 and, hence, 

(11) 

where hpq is symmetric in its indices. 
One final property of an ihg which is relevant to the 

classification of V4's is that of perfectness.8 The ihg of 
a region RC V ... is called perfect if there is at least one 
point PeR such that the set (Rab~v)P alone spans the 
entire set of generating bivectors of the group. In 
other words, an ihg will be called perfect, if the bivectors 
in Eq. (10) arising from the covariant derivatives are 
linearly dependent on those arising from the curvature 
tensor alone. An ihg which is not perfect will be called 
imperfect. There will be various degrees of imperfectness 
depending upon the number of linearly independent 
bivectors in Eq. (10) which are given by the curvature 
tensor alone, how many come from first derivatives, 
etc. Clearly, from Eq. (11), a necessary and sufficient 
condition for perfectness is (remember that for an 
r-parameter ihg p, q= 1, ... , r) 

det(hpq)=t=O for some PeR. 

In the next section we shall give a summary of the 
results of a classification of groups of rotation in a 
four-dimensional Minkowskian space9 and shall use 
these results to obtain a preliminary classification of 
ihg's in a V 4(+++-). 

S. CLASSIFICATION OF INFINITESIMAL­
HOLONOMY GROUPS IN V.(+++-) 

In our classification of ihg's of a V 4(+++-), we 
shall employ the results of another paper9 which gives 
a classification of groups of rotation in four-dimensional 
flat spaces R4 whose metric tensors have the various pos­
sible inequivalent signatures: (+ + + + ), (+ + + - ), 
( + + - - ). We begin first, then, with a brief outline of 
the method of classification of rotation groups. 

A rotation group in an R4 can be at most six para­
metric, but it may also have fewer than six parameters. 
Because of the commutation relations in Eq. (9), not 
every arbitrarily chosen set of r bivectors [see Eq. (5)J 
will be a complete set of generators of a group. Indeed, 
in R4(+++-) the restriction which Eq. (9) puts on 
the generating tensors is such as to exclude five­
parameter rotation groupS.lO Moreover, the nature of 

9 J. F. Schell (unpublished). 
10 Similarly, in an R4 ( ++++) five-parameter rotation groups 

are also excluded; however, in an R4 ( + + - -) five-parameter 
rotation groups are possible. 



                                                                                                                                    

204 J. F. SCHELL 

TABLE I. Classification of rotation groups in R. (+ + + - ). 

Number 
of group 

parameters 

o 

2 

3 

4 
6 

Class 
symbol 

R, 

{R2 Ra 
R. 
R. 

{R6 R1 
Rs 

r RIO 
Ru 
R12 
RI3 
RI4 
RI • 

Canonical basis for 
system of generators 

[pq] 
[px] 
[xy] 
[pq]+[xy] 
[pq] [px] 
[pq] [xy] 
[px] [py] 
[pq] [px] [py] 
[pq] [px] [qx] 
[px] [py] [xy] 
[px] [py] [xyJ+[pq] 
[xy] [xz] [yz] 
[pq] [px] [py] [xy] 
[pq] [px] [py] [qx] [qy] [xyJ 

two-, three-, and four-parameter groups are restricted. 
The theory of line geometry in a three-dimensional space 
and its representation in the five-dimensional homoge­
neous Klein space K6 11,12 are employed to obtain 
an exhaustive method of selecting various types of 
r-parameter sets of bivectors.13 From each set we select 
a basis consisting of r linearly independent bivectors 
Lpa(J. By checking the validity of Eq. (9), those sets 
which form a complete set of generators for a group of 
rotations are singled out. 

In K6 the various classes of rotation groups are 
characterized by an algorithm which makes use of 
geometrical representations (in K 6) for the Levi-Civita 
tensor density Ca(Jr8 and for the tensor ga[rg8](J which 
plays an important role in Petrov's classification. In 
the present paper, however, an equivalent but seemingly 
more physical characterization by canonical bases for 
the set of generating bivectors is given. A rotation 
group will belong to a given class, if its generating 
bivectors have a basis expressible in the canonical 
form for that class. The canonical basis for the 15 
different (mutually exclusive) classes of rotation groups 
in an R4 ( + + + -) are given in Table I. In this table 

11 V. Hlavaty, Differential Line Geometry (P. Noordhoff 
Groningen, 1953). ' 

12 V. Hlavaty, Geometry of Einstein's Unified Field Theory 
(P. Noordhoff, Groningen, 1958), Appendix III. 

13 The homogeneous Klein space K. may be regarded as a 
~ve-dimensional homogeneous bivector space. A point in K. has 
SIX homogeneous coordinates [A (A = 1· . ·6) and is associated with 
a bivector L'''fl=D~fl] in R. according to an arbitrarily chosen 
correspondence A <-> [aflJ between the six indices A and the six 
skew-symmetric index pairs [aflJ= -[flaJ. The group of trans­
formations in K. (other than the homogeneous transformation 
lA' =plA,p=const) is induced by coordinate transformations in 
R., namely, a transformation 

lA'=aAA'[.4, 

in K. is admissible, if and only if, 

where 
xa'=aa()('x«+aa' 

is an admissible transformation in R •. 

the following symbolism is used: x", ya are two mutually 
orthogonal spacelike real vectors; pc', Cf' are the two 
null vectors orthogonal to both x", ya; za is an arbitrary 
real spacelike vector in the plane of pc' and Cf' and is 
thus orthogonal to x", ya; [pqJ denotes the skew­
symmetric product p[arf], etc. 

It is interesting to note that only in two classes, R. 
and R 12, are we compelled to employ a general bivector 
in the canonical basis. 

Not all of the classes of rotation groups contain 
groups which may be infinitesimal holonomy groups for 
some V 4(+++-). For, if a rotation group with a 
canonical basis L pa(J is an ihg for a V 4 ( + + + - ), . 
then the curvature tensor is, in some nonholonomic 
frame (vierbein), expressible in the form of Eq. (11), 
and must satisfy the cyclic identity 

R[a/h] B = O. (12) 

(The other algebraic symmetries are automatically 
satisfied.) By using the canonical basis for class R., it 
is easily shown that a tensor given by Eq. (11) will 
satisfy Eq. (12) only if h"=O; this implies that R a(Jr8=O 

everywhere. Thus the space would be flat and the 
holonomy group would consist of the identity alone 
and would be of class Rl contrary to assumption. All 
other classes of rotation groups lead to tensors [see 
Eq. (l1)J which are compatible with the cyclic identity. 
Nonetheless, whether each of the other classes contain 
or do not contain ihg's for some V 4(+++-), is, as 
of this writing, still an unanswered problem. 

6. IHG CLASSIFICATION OF (+ + + - )-EINSTEIN 
SPACES 

A V4(+++-) whose Ricci tensor satisfies the 
Einstein condition 

Ra(J=Kga(J (Rafi=Rl'arl', K=a scalar), (13) 

is termed a (+ + + - )-Einstein space. In this section 
we outline the technique for showing that the ihg's for 
(+++-)-Einstein spaces are contained in at most 
five classes of rotation groups and that empty spaces 
(K=O) are contained in only four of the classes of 
rotation groups. 

Clearly, no Einstein space can have its ihg in class 
Rs since, as shown previously, there is no ihg of any 
V 4 ( + + + -) in this class. On the other hand, the 
only V4(+++-) with an ihg in class RI is flat space 
(Ra/h8=O) and is a trivial example of an empty space. 
That there can be no Einstein space with an ihg of 
class Rk , k== 2, 3, 4, 6, 10, 13, follows from the following 
factI ,14 : 

Ina nonholonomic frame (vierbein, tetrad, 4-nuple) 

u aa, uG
Q , uaaUba= Oa b (a, b= I, .. ,,4), (14) 

in which the matrix of the nonholonomic (physical) 

14 H. S. Ruse, Proc. London Math. Soc. 50, 75 (1944). 
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components of the metric tensor has the form 

(gab)= (gal/uaau/) = diag(l 1 1 -1), (15) 

the (nonholonomic) components R abcd of the curvature 
tensor of an Einstein space are such that 

(RAB)-(M N) (A B=l '" 6) (16) - N -M' , , , , 

where 

M and N are 3X3 symmetric matrices, (17) 

(a) trM=1( (b) trN=O, (18) 

and 

A and B are composite indices representing skew-sym­
metric index pairs according to the scheme: 

A 1 2 3 456 

[abJ [14J [24J [34J [23J [31J [12]. 
(19) 

The condition (18b) is the cyclic identity of Eq. (12). 
The conditions (16), (17), and (18a) result from the 
Einstein condition of Eq. (13). 

Thus, if a given class of rotation groups contains 
ihg's for (+++- )-Einstein spaces then the curvature 
tensor given by Eq. (11) must satisfy the conditions 
(16)-(18) in an arbitrary orthonormal nonholonomic 
frame. If there is an Einstein space with ihg of class 
Rk , k = 1, "', 15, its curvature tensor is given by 
Eq. (11), where the L paf1 may be taken as the bivectors 
of the canonical basis for class Rk (as given in Table I). 
For each class, introduce the orthonormal nonholonomic 
frame 

u<f'=fr 

ut'= (pa+qx)/V'l, u('= (pa-qx)/V'l, 
where if' and fr are unit vectors in the direction of X' 

and ya, and pa, qx are vectors along pa and f{' which 
satisfy the relation paqa= 1. It is easily shown that when 
k= 2, 3, 4, 6, 10, 13, condition (17) requires that all 
hpq= 0 and, hence, that the space be flat space, but 
then the ihg would be of class R1, contrary to assump­
tion. Thus there are no Einstein spaces with ihg's in 
these classes. On the other hand, when k= 7, 8, 9, 11, 
12, 14, 15, the conditions (15)-(18) will be satisfied 
only if the hpq satisfy certain conditions. These condi­
tions on hpq are given in Table II. For completeness we 
also include class R l • 

From Table II it is seen that if Einstein spaces with 
three-parameter holonomy groups exist (classes RD, 

R u , R 12), they are empty: 1(= O. The following considera­
tions will show that in fact they do not exist. 

It is easy to show that an empty Einstein space with 
(RAB)-rank 2 has its curvature tensor expressible in 
the form 

TABLE II. Conditions on hpq imposed by conditions (16)-(18). 

Number 
of group Rota­
param- tion 

eters class Conditions on hpq 

o 
2 

3 

4 

6 

RI 

{
R7 h"=-h22iO h12 =O 
Rs h"= -h22' , 

{~:I} h"= -h22, h3p=hP3=O, K=O 
R12 

{ 
h"= -h22 h33= _h44 hI3 = _h24 K=h33 

R14 h23 =h14=hs<=O' , 

R16 h"= -h44 h22= _hoo h33 = _h66 

hI2 = -h4o: hI3= _h.6: h23= _ho6 
hlo = h42 h~ = hI6 h03 = h26 
h14+h26+h36=O,' K=h"+h22+k33 

where POI, xa, Ya have the same significance as before in 
connection with Table I. Thus the bivectors [px J, 
[pyJ are two independent generating bivectors of the 
ihg. Consideration of the covariant derivatives of Eq. 
(20) discloses that either no more linearly independent 
generating bivectors, or four such bivectors, arise from 
the derivatives. Thus an empty Einstein space of 
(RAB)-rank r' = 2 has an ihg of either two or six 
parameters. 

It follows from conditions (16) and (17) that the 
rank r' of (RAB) for an Einstein space must be 0, 2,4, 
or 6. This implies that there are r' linearly independent 
rows in the matrix (RAB). The rows of (RAB) will then 
determine r' linearly independent bivectors, according 
to the scheme (19). These bivectors (given by their 
components in the nonholonomic frame ua"', U a

a ) are 
precisely the bivectors of Eq. (10) which come from 
the curvature tensor alone and thus are linearly 
independent bivector generators of the holonomy group. 
Thus if an Einstein space with a three-parameter 
holonomy group exists, the rank r' of (RAB) must be 
an even number such that O<r' <3. We conclude that 
r' = 2, and hence r= 2 or 6, contrary to the assumption 
that r=3. 

7. RELATION BETWEEN THE IHG CLASSIFICATION 
OF EMPTY SPACES AND THE PETROV 

CLASSIFICATION 

Petrov1 has given a classification of ( + + + - )­
Einstein spaces according to the eigenbivectors of the 
eigenvalue problem 

RaI/'Y8L'Y6= KLa{3(= Kga [rg8]I/L'Y 8
). 

He found three types. Type I is characterized by the 
existence of six independent eigenbivectors; type II 
by four independent eigenbivectors; type III by two 
independent eigenbivectors. Petrov also showed that 
by a suitable choice for a nonholonomic frame, the 
Riemann tensor of each type assumes a characteristic 
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canonical form: 

Type I. 
al fJI 

a2 fJ2 

(RAB) = 
a3 /33 

fJI -al 

Type II. 

al 

(RAB) = fJl 

Type III. 

fJ2 -a2 
fJ3 -a3 

3 

L fJi=O. 
i-I 

fJl 
a2- u fJ2 u 

a2+u u fJ2 
-al 

/32 u -a2+u 
u /32 

al+2a2=K, /31+2/32=0 
u=l=O. 

a u 
u a 

a u 
-a -u 

u -u a 

3a=K. 

-a2-u 

Table III shows the relation between the Petrov 
classification of empty spaces and the ihg classification. 
The concept of the perfectness of the holonomy group 
was used in establishing the comparison. As demon­
strated in the preceding section, the number of generat­
ing bivectors of the ihg coming from the curvature 
tensor alone is always even and is equal to the rank 
of (RAB). Thus the degree of imperfectness of the 
holonomy group is given by the rank of (RAB) in 
comparison with the number of group parameters. 
With the exception of the impossibility of an Einstein 

TABLE III. Relation between ihg classification of empty 
spaces and the Petrov classification. 

Number Rotation 
of group group 

parameters class CRAB) rank Petrov type 

0 R, 0 I 
2 R7 2 II 
4 R14 4 III 

6 I II 
6 R15 4 I III 

2 II 

space wit.h a four-parameter imperfect holonomy group, 
the relatIon between the two classifications is readily 
established by the use of the canonical bases of Table I, 
Eq. (11), and the Petrov canonical forms of (RAB). 
That the four-parameter imperfect case does not occur, 
follows from the fact that, if such a case existed, the 
(RAB)-rank would necessarily be 2, but in that event, 
as demonstrated before, the number of parameters of 
the holonomy group must be 2 or 6 and could not be 4. 

A study of Table II discloses the following: 

(a) Petrov type I spaces have either 0- or 6-
parameter ihg's. 

(b) Petrov type II spaces have either 2- or 6-
parameter ihg's. 

(c) Petrov type III spaces have 4- or 6-parameter 
ihg's and the (RAB)-rank is necessarily 4. 

(d) There are no empty spaces with 1-, 3-, or 5-
parameter holonomy groups. 

(e) All empty Einstein spaces with an imperfect 
ihg are six parametric. 

Newman2 has developed the following treatment of 
empty space Riemann tensors. He considers a non­
holonomic frame with base vectors xa, 0", pa, If' (these 
vectors have the same significance as in Sec. 6). From 
t~ese ve:tors are constructed the six bivectors [M], 
/fl], [PO], [qi], [qO], [iY], and their quadratic 
products. Among the linear combinations of such 
products, 10 independent tensors are selected which 
possess all the symmetries of the curvature tensor and 
have vanishing "Ricci tensor." An arbitrary curvature 
tensor for empty space is then a linear combination of 
these 10 tensors. The covariant derivatives of the 10 
"basic curvature tensors" are computed and expressed 
as linear combinations of the "basic curvature tensors" 
with vector coefficients. Newman also gives the form 
of the curvature tensors of the three Petrov types as 
linear combinations of the 10 "basic curvature tensors" ; 
the coefficients are just the a's, /3's, and u's of Petrov's 
canonical form. 

It follows from this that the formalism used by 
Newman and that employed in the ihg classification 
are closely related. Indeed, using the forms of the 
curvature tensor which Newman gives and the differen­
tial relations which he also derives, it is an easy matter 
to check the validity of Table III. 
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Geometry of Light Paths between Two Material Bodies 
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The pattern of light signals, which was proposed before for the measurement of the curvature is in­
vestigated in a two-dimensional manifold of constant curvature (deSitter space). The pattern ~onsists 
of light signals between two freely moving bodies, each signal being emitted when the signal from the other 
body arrives. It is shown that the coordinates of the arrivals (or emissions) of the light signals can be obtained 
fro~ the cc:ordinates of t~e emission of the first signal by means of projective transformations [see Eq. (18)] 
whIch are Iterates of a smgle such transformation. The same applies to the proper times at which these 
signals are received. 

PRELIMINARY REMARKS ABOUT THE 
deSITTER SPACE 

I N connection with the measurement of the curvature 
in a two-dimensional universe, the paths of light 

signals between two freely moving bodies were con­
sidered in some detail,1 Since the curvature is, in general, 
different for different points of space time, the earlier 
investigation was restricted to the case in which the 
spatial distance of the two material bodies is small as 
compared with the radius of curvature. This restriction 
appears necessary, if one wants to assume that the 
curvature is constant throughout the region in which 
the measurement takes place. It may be worthwhile to 
point out, nevertheless, that in a (two-dimensional) 
space of constant curvature, i.e., in a two-dimensional 
deSitter space, the light signals between freely moving 
bodies form a simple geometric pattern, no matter 
what is the state of relative motion of the two material 
bodies. 

The two-dimensional deSitter space can be visualized 
most easily2 as a hyperboloid which is embedded into 
a three-dimensional space x, y, T; the equation of the 
hyperboloid is 

(1) 

where a is the "radius of the universe." It is connected 
with the Riemann tensor by the equation 

(1a) 

Both the hyperboloid and the metric are invariant 
with respect to linear transformations which leave the 
form 

F=x2+y2-r (2) 

invariant. This enables one to obtain all geodesics by 
transformations of a single geodesic. For reasons of 
symmetry 

x=acoshs, y=O, T=asinhs, (3) 

is a geodesic; others will be obtained therefrom by 
transformations which leave F invariant. Furthermore, 
the geodesic (3), as a whole, is invariant under the 

1 E. P. Wigner, Revs. Modem Phys. 29, 255 (1957); Phys. Rev. 
120, 643 (1960). 

I See, e.g., H. P. Robertson, Revs. Modem Phys. 5, 62 (1933). 
See, however, footnote 4. 

Lorentz transformation in x and T, 

x' = coshxx+ sinhxT 

y'=y 

T' = sinhxx+coshxT. 

(4) 

In the parametric representation (3) of this geodesic, 
the transformation (4) replaces s by s+x. It then 
follows that the distance of two points of (3), character­
ized by two values SI and S2 of the parameter s, depends 
only on the difference S2-S1 of the parameters. One 
infers from this that the distance of the two points of 
the geodesic, measured along the geodesic, is propor­
tional to the difference of the values of the parameter s 
which characterize these points. The constant of 
proportionality is easily calculated to be a, SO that the 
distance becomes, simply, a(s2-s1). 

A Lorentz transformation in y and T produces from 
(3) the new geodesic 

x' = X= a coshs 

y'=y cosh!p+T sinh!p=a sinh!p sinhs (5) 

r' = y sinh!p+T cosh!p= a cosh!p sinhs, 

and all timelike geodesics which go through the point 
x= a, y= r= 0 have a parametric representation of the 
form (5) with a suitable !p. This !p is simply the hyper­
bolic angle between the velocities which correspond to 
the geodesics (3) and (5). The distance of two points 
of (5), characterized by the values SI and S2 of the 
parameter s, as measured along the geodesic, is still 
a(s2-s1), since this distance is invariant with respect 
to the transformation which led from (3) to (5). 

In order to obtain a two-dimensional picture of our 
deSitter space, we again suppress the variable r. Then, 
the points of the xy plane which are outside the circle 

(6) 

each correspond to two points of the deSitter space. 
We shall say that the xy plane outside the circle (6) has 
two sheets: the x, y point of the lower sheet corresponds 
to the point x, y, r= - (x2+y2-a2)t of the hyperboloid, 
the x, y point of the upper sheet to the point x, y, 
r= + (x2+y2-a2)t of the hyperboloid. The inside of 
the circle (6) does not exist for our purposes. The 

207 
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geodesic (3) is represented on the xy plane by the line 
segment 

y=O, x>a. (7) 

The image of a material body travels on this segment 
first on the lower sheet in the direction of decreasing x, 
then on the upper sheet in the direction of increasing x. 
The picture of the geodesic (5) in the xy plane is the 
hyperbola 

(8) 

which is traversed in the direction indicated by the 
arrow in Fig. 1, starting again on the lower sheet but 
passing into the upper one at the point a, O. The 
distance of a point x, y from the point a, 0, as measured 
along the geodesic which connects the two points, is 
as, where s is the parameter of the point x, y on the 
geodesic (5). Since as can be expressed by x alone, 

as=a arc cosh(x/a)=a In[x+(;t2-a2)!J/a. (9) 

The points which are at equal distance from the a, 0 
point lie on straight lines parallel to the y axis. Figure 1 
gives the lines which represent points at distances 0, 
±ta, ±a, ±!a from the point a, O. The square root in 
(9) must be taken with the negative sign on the lower 
sheet; the corresponding s are then also negative. 

It follows from the development of the last paragraph 
that the points at distance 0 from a, 0 lie on the line 
which is tangent to the circle (6) at x=a, y=O. The 
two light signals (our space has only one spatial 
dimension) which pass through the point a, 0, travel 
in opposite directions along this line, both passing at 
a, 0 from the lower into the upper sheet. Their paths are 
straight lines on the hyperboloid, called rulings. All 
other light signals are represented on our diagram by 
tangents of the circle (6); they can be obtained from 
the two light signals just described by rotations in the 
xy plane. All the preceding results have been established 

FIG. 1. Geodesics obtained bv the Lorentz trans­
formation (4) from the geodesic·y=O. The geodesics 
are represented by their projections into the xy 
plane. Broken line indicates the lower sheet of 
plane (T <0); full line indicates the upper sheet 
(T>O). The proper time elapsed after the passage 
through the a,O point is given by as; points of con­
stant s lie on lines parallel to the y axis. Positive s 
values refer to the upper sheet; negative values 
refer to the lower sheet. 

before and are well known; they are repeated here for 
the reader's convenience. 

LIGHT SIGNALS BETWEEN TWO 
MATERIAL BODIES 

The world lines of two material bodies in the same 
space-time plane can either intersect or not. The latter 
alternative would mean, in a flat space, that they are 
at rest with respect to each other-which is an excep­
tional situation. The same is not true in hyperbolic 
space and two timelike geodesics can approach each 
other and again separate without ever intersecting. The 
geodesic (3) and any other geodesic obtained from it 
by a rotation in the xy plane are in this relation. Hence, 
the case of nonintersection is not an exceptional one in 
the hyperbolic case. Nevertheless, only the case of 
two intersecting timelike geodesics will be considered 
in the present note. This will be done, partly for 
reasons of space, and partly because the earlier publica­
tionsl are principally concerned with nonintersecting 
world lines. 

The intersection of two world lines, as every point 
on the hyperboloid, can be brought into the point 
x=a, y=r=O by a transformation which leaves the F 
of Eq. (2) invariant. The two world lines will then have 
parametric representations of the form given in (5), 
with different hyperbolic angles 'P= 'PI and 'P= 'P2. A 
further transformation of the type used in (5), but 
with the angle -H'PI+'P2) will then change 'PI into 
H CPI- CP2) and 'P2 into H CP2- 'PI)' Denoting the former 
angle by t cP, the parametric representations of the 
two geodesics become 

xl=x2=acoshs 

YI= -Y2=a sinht'P sinhs 

rl= T2=a cosh!cp sinhs. 

(10) 
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The transformations just carried out shift the point of 
coincidence ofthe two bodies to the point x= a, y= r= 0, 
and reduce the velocity of their center of mass to zero. 
These transformations give the two world lines a 
convenient form; they do not change any of their 
invariant properties. In particular, they do not affect 
relations between traveling times of light quanta 
passing back and forth between them, if these traveling 
times are proper times measured along the world lines 
themselves. 

The images of the two world lines in the xy plane 
now coincide and form the hyperbola 

(11) 

which is traversed, by the two bodies, in opposite 
directions. Before they reach the x= a, y= 0 point, both 
are on the lower sheet of the xy plane; they pass at that 
point into the upper sheet. The hyperbolic angle of 
their relative velocity at coincidence is ip. 

The image of a light signal between the two bodies is 
that segment of a tangent to the circle (6) which lies 
inside the hyperbola. It is on the lower sheet of the xy 
plane, if the emission takes place before the coincidence 
of the two particles, i.e., if the images of the particles 
are themselves on the lower sheet. In this case, the' 
light signal travels toward the circle. If the emission of 
the light signal takes place after the coincidence of the 
two particles, their image is on the upper sheet and 
so is the image of the light signal which travels, in 
this case, away from the circle. 

Figure 2 illustrates the construction of a series of 
light signals, each emitted from one of the bodies when 
the previous signal, emitted by the other body, arrives. 
Naturally, there must be a first light signal which initi­
ates the series. The images of these light signals form 
a polygon which is circumscribed around the circle (6) 
and is inscribed into the hyperbola (11). If the emission 
of the first signal takes place before the two bodies 
meet, the series has no end and infinitely many light 
signals can be exchanged before the two bodies come 
to coincidence. If the first light signal is emitted after 
this coincidence, only a finite number of light signals 
can be exchanged before the two bodies "recede under 
each other's horizon," and thus lose contact. In order 
to obtain the successive corners of the polygon, one has 
to draw, from the corner last obtained, the tangent to 
the circle which corresponds to the emission of a signal, 
and bring this tangent into intersection with the other 
branch of the hyperbola. The following section will 
describe the properties of this polygon; in particular, 
it will give an expression for the proper times at which 
the successive light quanta are received. 

ARRIVAL TIMES OF THE LIGHT SIGNALS 

The circle and hyperbola of Fig. 2 have two pairs of 
coincident points in common. They are, therefore, in 

y 

x 

FIG. 2. Construction of light signals between two bodies 
approaching each other with equal velocities. All points of the 
hyperbola are on the lower sheet, i.e., all events take place before 
the bodies reach the a,O point. If the convention of Fig. 1 had been 
followed, all lines would be broken. The images of light signals 
are tangents to the circle; the signal emitted at 0 reaches the 
second body at 1; the signal emitted at 1 reaches the first body 
at 2, and so on. 

the terminology of projective geometry,a members of a 
pencil of conics, as well as members of a range of conics. 
It is well known,4 that there exists a one parametric 
manifold of projective transformations which leave 
two such conics invariant, and that the points of 
coincidence are fixed points of these transformations. 
In our case, the projective transformations in question 
are 

x coshx-a sinhx 
x' =a-------­

-x sinhx+a coshx 

y 
y'=a--------­

-x sinhx+a coshx' 

(12) 

with an arbitrary x. Incidentally, these transformations 
also leave all other conics of the pencil or range in-
variant, Le., all conics ' 

(13) 

but this is of no significance for our discussion. Note, 
however, that for positive x (since x>a on the hyperbola 
and coshx> sinhx for all real x), the numerator of the 
expression for x' will be positive. Hence, if we restrict 

3 See, e.g., C. W. O'Hara and D. R. Ward, An Introduction to 
Projective Geometry (Clarendon Press, Oxford, England, 1937), 
p. 126 ff. 

4 It is not easy to find an explicit statement of this theorem in 
the literature. See, however, O. Veblen and]. W. Young, Projective 
Geometry (Ginn and Company, Boston, Massachusetts, 1910), 
Chap. X, or Figure 6.8C of H. S. M. Coxeter's The Real Projective 
Plane (Cambridge University Press, Cambridge, England, 1955). 
The conics of this figure are all tangent to the lines AP and AQ 
at the points P and Q respectively; these points, as well as A, 
are fixed points of the transformations in question. They corre­
spond to our points (a,O) , (-a, 0), (0, 00). The transformations 
are the products of the harmonic homologies with axis PQ and 
center A, and with axis AB and center C. The position of the point 
B is the free parameter; C is the harmonic conjugate of B with 
respect to P and Q. I am indebted to Dr. Coxeter for this reference. 
However, no general proof of the theorem will be given since the 
transformations in question are exhibited explicitly in our Eq. (12). 
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ourselves to transformations which do not interchange 
the two branches of the hyperbola, we must restrict X 
to such values that the denominators in Eqs. (12) are 
also positive. 

In addition to Eqs. (12), the conics are evidently 
invariant also under the reflections 

x'=x y'=-Y (12a) 

x'=-x y'=y (12b) 

x'=-x y'= -yo (12c) 

Only Eq. (12a), or rather, the combination of Eqs. 
(12) and (12a), will be used in what follows. 

If we subject a tangent to the circle to a transforma­
tion (12) or a combination of Eqs. (12) and (12a), the 
resulting line will still be a tangent to the circle. 
Furthermore, the points of intersection with the hyper­
bola will be transformed into points of intersection with 
the hyperbola. Hence Eq. (12) transforms a light signal 
from the first body to the second body into a similar 
light signal. If we want to transform a light signal from 
the first body to the second into a light signal from the 
second body into the first, we must use a combination 
of Eqs. (12) and (12a), i.e., write 

x coshx-a sinhx 
x'=a:------­

- x sinhx+a coshx 

-ay 
y' 

-x sinhx+a coshx 

(14) 

By choosing X appropriately, the point of intersection 
of the light signal with the upper branch of the hyper­
bola can be transformed into the point of intersection of 
the light signal 'with the lower branch. Since this point 
is the starting point of the next (responding) light signal, 
Eqs. (14) transform the equation of each light signal 
into the equation of the next light signal. They also 
transform the point of emission of each light signal into 
the point of emission of the next light signal. The same 
applies for the points of arrival. In fact, the whole 
polygon is transformed onto itself by the transformation 
(14) with the proper x. 

The proper value of X remains to be determined. 
This can be obtained from the condition that the 
intersection of a tangent to the circle 

with the transform of this tangent 

x coshx-a sinhx y 
~ ~ ~U~ 

-x sinhx+a coshx -x sinhx+a coshx 

lie on the hyperbola (11). The point of intersection of 

the lines (15) and (lSa) is 

a(l +coshx)+~ sinhx 
x=a , 

a sinhx+H1 +coshx) 
(16) 

a'T/ sinhx 
y . 

a sinx+Hl +coshx) 

With ~+,f= a2, the condition that the point (16) lie 
on the hyperbola (11), reduces to 

sinh2lcp= l(coshx- 1) 
or 

x=±cp· 

(17) 

(17a) 

The upper sign holds on the upper sheet where the 
image of the light signal moves away from the circle 
so that I y' I > I y I ; the lower sign holds on the lower 
sheet where the opposite is true. It would seem though 
that it should be possible to obtain Eq. (17a) with less 
computation than Eqs. (15)-(17) imply. 

Let us denote the coordinates of the point at which 
the first light signal is emitted by Xo, Yo, TO. The image 
of this point on the xy plane is Xo, Yo, and the image of 
the arrival point of this signal, which is also the depar­
ture point of the second signal, can be obtained by the 

.transformation (14) with x=±cp. The coordinates of 
the image of the arrival point of the signal n-l, which 
is also the departure point of the signal n, will be 
denoted by x n, Yn' This can be obtained from Xo, yo 
by the transformation which is the n-fold iterate of the 
transformation (14), with x= ± cpo Hence, 

Xo coshncp=Fa sinhncp 
x,.=a:--------­

=Fxo sinhncp+a coshncp 

(- )nayo 
Yn 

=Fxo sinhncp+a coshncp 

(18) 

(18a) 

The corresponding Tn can be calculated from expression 
(1) : 

Tn 
=Fxo sinhncp+a coshncp 

(18a) 

As was mentioned before, n can grow indefinitely if 
the first signal is emitted before the bodies come to a 
coincidence, i.e., if one is on the lower sheet of the xy 
plane and uses the lower sign in Eqs. (18). The number 
n has an upper limit, if the signals are emitted after the 
coincidence; Xn becomes negative for larger n. The 
points with even n represent arrival and departure 
points at the first body; the points with odd n refer to 
events at the second body. 

Finally, we calculate the proper time t2n which a 
clock on the first body would attribute to the nth 
arrival of a signal. If the clock measures the time from 
the time at which the two bodies are in coincidence, its 
time will be the same as of Eq. (9). Hence, 

(19) 
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where 
q2n = a-1[x2,,+ (X2,,2- a2)iJ. (19a) 

It follows from Eq. (19a) that 

x2,,=!a(q2,,+1/q2,,). (20) 

Clearly, X2n and q2n mutually determine each other. 
Hence, the equation 

qo coshn!p=Fsinhn!p 
q2" (21) 

=Fqo sinhn!p+coshn!p 

will be established, if the X2" calculated from it by 
Eq. (20) becomes equal to the expression (18) obtained 
earlier. Hence, we calculate 

!a(q2 .. +1/q2,,) 

(qo coshn!p=Fsinhn!p)2+(=Fqo sinhn'P+coshn'P)2 
=!a----------------------------------

(=Fqo sinhn!p+coshn!p) (qo coshn!p=Fsinhn!p) 
(22) (1 +qo2) cosh2n!p=F2qo sinh2n!p 

=!a . 
=F! (1 +qo2) sinh2n!p+qo cosh2n!p 

Multiplying numerator and denominator by (a/qo) 
gives, since qo is so defined that Eq. (20) holds there for, 

Xo cosh2n'P=Fa sinh2n!p 
!a(q2,,+1/q2n)=a X2". (22a) 

=Fxo sinh2n'P+a cosh2n'P 

This then verifies Eq. (21), and gives the rather simple 
expression 

elO/lJ coshn!p=Fsinhn'P 
t2,,= a In:--------­

=Fe/o/G sinhn'P+coshn!p 
(23) 

for the time of the nth event at the first body. The lower 
sign applies if these events precede the coincidence of 
the two bodies; the upper sign applies in the opposite 
case. 

It should be mentioned perhaps that the earlierl 

publications, tl, 12, and t3 are, in the present notation, 
t2-to, t4-12, and t6-t(. 
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An argument leading from the Lorentz invariance of the 
Lagrangian to the introduction of the gravitational field is pre­
sented. Utiyama's discussion is extended by considering the 
10-parameter group of inhomogeneous Lorentz transformations, 
involving variation of the coordinates as well as the field variables. 
It is then unnecessary to introduce a priori curvilinear coordinates 
or a Riemannian metric, and the new field variables introduced 
as a consequence of the argument include the vierbein components 
hI!' as well as the "local affine connection" Aii •. The extended 
transformations for which the 10 parameters become arbitrary 
functions of position may be interpreted as general coordinate 
transformations and rotations of the vierbein system. The free 
Lagrangian for the new fields is shown to be a function of two 
-covariant quantities analogous to F •• for the electromagnetic 
field, and the simplest possible form is just the usual curvature 

1. INTRODUCTION 

I T has long been realized that the existence of certain 
fields, notably the electromagnetic field, can be 

related to invariance properties of the Lagrangian.1 

Thus, if the Lagrangian is invariant under phase trans­
fonnations 1/!-t eie>;f;, and if we wish to make it in­
variant under the general gauge transfonnations for 
which A is a function of x, then it is necessary to intro­
duce a new field AI' which transfonns according to 
AI' -t AI'- al'A, and to replace aI'1/! in the Lagrangian by 
a "covariant derivative" (al'+ieAI')1/!. A similar argu­
ment has been applied by Yang and Mills2 to isotopic 
spin rotations, and in that case yields a triplet of vector 
fields. It is thus an attractive idea to relate the existence 
of the gravitational field to the Lorentz invariance of 
the Lagrangian. Utiyama3 has proposed a method 
which leads to the introduction of 24 new field variables 
A iiI' by considering the homogeneous Lorentz trans­
fonnations specified by six parameters Eii. However, 
in order to do this it was necessary to introduce a priori 
curvilinear coordinates and a set of 16 parameters hkl'. 
Initially, the hkl' were treated as given functions of x, 
but at a later stage they were regarded as field vari­
ables and interpreted as the components of a vierbein 
system in a Riemannian space. This is a rather unsatis­
factory procedure since it is the purpose of the dis­
~ussion to supply an argument for introducing the 
gravitational field variables, which include the metric 
.as well as the affine connection. The new field variables 
A iiI' were subsequently related to the Christoffel con­
nection rAI'V in the Riemannian space, but this could 
"Only be done uniquely by making the ad hoc assumption 

* NATO Research Fellow. 
1 See, for example, H. Weyl, Gruppentheorie und Quanten­

mec'!anik (8. Hirz~l, Leipzig, 1931), 2nd ed., Chap. 2, p. 89; and 
,earlier references Cited there. 

2 C. N. Yang and R. L. Mills, Phys. Rev. 96, i91 (1954). 
3 Ryoyu Utiyama, Phys. Rev. 101, 1597 (1956). 

scalar density expressed in terms of hk' and A iiI" This Lagrangian 
is of first order in the derivatives, and is the analog for the vierbein 
formalism of Palatini's Lagrangian. In the absence of matter, it 
yields the familiar equations R •• =O for empty space, but when 
matter is present there is a difference from the usual theory (first 
pointed out by Weyl) which arises from the fact that A iiI' appears 
in the matter field Lagrangian, so that the equation of motion 
relating Aii. to hI!' is changed. In particular, this means that, 
although the covariant derivative of the metric vanishes, the 
affine connection rx •• is nonsymmetric. The theory may be reex­
pressed in terms of the Christoffel connection, and in that case 
additional terms quadratic in the "spin density" Skii appear in 
the Lagrangian. These terms are almost certainly too small to 
make any experimentally detectable difference to the predictions 
of the usual metric theory. 

that the quantity r/XI' V calculated from A iiI' was 
symmetric. 

It is the purpose of this paper to show that the 
vierbein components hkl', as well as the "local affine 
connection" A iiI" can be introduced as new field vari­
ables analogous to AI' if one considers the fulllO-param­
eter group of inhomogeneous Lorentz transfonnations 
in place of the restricted six-parameter group. This 
implies that one must consider transfonnations of the 
coordinates as well as the field variables, which will 
necessitate some changes in the argument, but it also 
means that only one system of coordinates is required, 
and that a Riemannian metric need not be introduced 
a priori. The interpretation of the theory in tenns of a 
Riemannian space may be made later if desired. The 
starting point of the discussion is the ordinary fonnu­
lation of Lorentz invariance (including translational 
invariance) in tenns of rectangular coordinates in flat 
space. We shall follow the analogy with gauge trans­
fonnations as far as possible, and for purposes of com­
parison we give in Sec. 2 a brief discussion of linear 
transfonnations of the field variables. This is essentially 
a summary of Utiyama's argument, though the em­
phasis is rather different, particularly with regard to 
the covariant and noncovariant conservation laws. 

In Sec. 3 we discuss the invariance under Lorentz 
transformations, and in Sec. 4 we extend the discussion 
to the corresponding group in which the ten parameters 
become arbitrary functions of position. We show that 
to maintain invariance of the Lagrangian, it is necessary 
to introduce 40 new variables so that a suitable cova­
riant derivative may be constructed. To make the 
action integral invariant, one actually requires the 
Lagrangian to be an invariant density rather than an 
invariant, and one must, therefore, multiply the invariant 
by a suitable (and uniquely detennined) function of the 
new fields. In Sec. 5 we consider the possible fonns of the 
free Lagrangian for the new fields. As in the case of the 

212 
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electromagnetic field, we choose the Lagrangian of 
lowest degree which satisfies the invariance require­
ments. 

The geometrical interpretation in terms of a Rieman­
nian space is discussed in Sec. 6, where we show that 
the free Lagrangian we have obtained is just the usual 
curvature scalar density, though expressed in terms of 
an affine connection r'l'u which is not necessarily sym­
metric. In fact, when no matter is present it is sym­
metric as a consequence of the equations of motion, but 
otherwise it has an anti symmetric part expressible in 
terms of the "spin density" @51';j. Thus there is a dif­
ference between this theory and the usual metric 
theory of gravitation. This difference was :first pointed 
out by Weyl,4 and has more recently been discussed by 
Sciama.6 It arises from the fact that our free Lagrangian 
is of first order in the derivatives, with the hkl' and A ijl' 
as independent variables. It is possible to re-express the 
theory in terms of the Christoffel connection Or\u or 
its local analog °A ijl" and this is done in Sec. 7. In that 
case, additional terms quadratic in @5l'ih and multiplied 
by the gravitational constant, appear in the Lagrangian. 

2. LINEAR TRANSFORMATIONS 

We consider a set of field variables XA (x), which we 
regard as the elements of a column matrix x(x), with 
the Lagrangian 

L(x)=L{X(x), X,I'(x)}, 

where X,I'= a"x. We also consider linear transformations 
of the form 

(2.1) 

where the ~a are n constant infinitesimal parameters, 
and the Ta are n given matrices satisfying commutation 
rules appropriate to the generators of a Lie group, 

[Ta,Tb]= /acbTc. 

The Lagrangian is invariant under these transforma­
tions if the n identities 

(2.2) 

are satisfied, and we shall assume that this is so. Note 
that ajax must be regarded as a row matrix. The 
equations of motion imply n conservation laws 

where the "currents" are defined by 6 

J"a= - (aLj ax,,,) TaX. 

4 H. Weyl, Phys. Rev. 77, 699 (1950). 

(2.3) 

5 D. W. Sciama, Festschrift for Infeld (Pergamon Press, New 
York), to be published. 

6 We have defined Jl'a with the opposite sign to that used by 
Utiyama.8 This is because with this choice of sign the analogous 
quantity for translations is Tp u rather than - Tp •. The change may 
be considered as a change of sign of Ea and Ta, and there is a cor­
responding change of sign in (2.6). This convention has the addi­
tional advantage that the "local affine connection" Ai;p defined 
in Sec. 4 specifies covariant derivatives according to the same rule 
as r\;. 

Now, under the more general transformations of the 
form (2.1), but in which the parameters ~a become 
arbitrary functions of position, the Lagrangian is no 
longer invariant, because the derivatives transform 
according to 

(2.4) 

and the terms in ~a ,I' do not cancel. In fact, one finds 

oL= _~a,,,J"a. 

However, one can obtain a modified Lagrangian which 
is invariant by replacing x," in L by a quantity x;" 
which transforms according to 

(2.5) 

To do this7 it is necessary to introduce 4n new field 
variables Aa" whose transformation properties involve 
ea,,,. In fact, if one takes 

(2.6) 

then the condition (2.5) determines the transformation 
properties of the new fields uniquely. They are 

(2.7) 

In this way one obtains the invariant Lagrangian 

L'{X,X,,,,Aa,,}=L{X,X;,,}. 

The expression X;" may be called the covariant deriva­
tive of X with respect to the transformations (2.1). One 
may define covariant currents by 

(2.8) 

where L is regarded as a function of X and X;". They 
transform linearly according to 

and their covariant divergences vanish in virtue of the 
equations of motion and the identities (2.2): 

=0. 

Two covariant differentiations do not in general 
commute. From (2.6) one finds 

where 
(2.9) 

Unlike Aal" the expression Fa"u is a covariant quantity 
transforming according to 

and one may, therefore, define its covariant derivative 
in an obvious manner. It satisfies the cyclic identity 

Fal'u;p+Faup;,,+Fapl';u=O. 

7 For a full discussion, see footnote 3. 
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It remains to find a free Lagrangian Lo for the new 
fields. Clearly Lo must be separately invariant, and it 
is easy to see3 that this implies that it must contain 
A"" only through the covariant combination pa" •. The 
simplest such Lagrangian iss 

(2.10) 

where the tensor indices are raised with the :flat-space 
metric 'TIP. with diagonal elements (1, -1, -1, -1), 
and the index a is lowered with the metricSa 

gabS: facdfcdb 

associated with the Lie group (except of course for a 
one-parameter group). It is clear that this Lagrangian 
is not unique. All that is required is that it should be 
a scalar both in coordinate space and in the Lie-group 
space, and one could add to it terms of higher degree 
in Fap •• However, it seems reasonable to choose the 
Lagrangian of lowest degree which satisfies the in-
variance requirements. . 

With the choice (2.10) of L o, the equations of motion 
for the new fields are 

Because of the antisymmetry of FaP• one can define 
another current which is conserved in the strict sense: 

(2.11) 
where 

This extra current jP" may be regarded as the current 
of the new field A ap itself, since it is expressible in the 
form 

jP,,= - (aLo/Map)= - (aLo/aA b •• p)NcA c., (2.12) 

which should be compared with (2.8). Note, however, 
that it is not a covariant quantity. To obtain a strict 
conservation law one must sacrifice the covariance of 
the current. 

3. LORENTZ TRANSFORMATIONS 

We now wish to consider infinitesimal variations of 
both the coordinates and the field variables, 

xp.~x'P.=xP.+l5xP., 

x(x) ~ x' (x') = x (x) +l5x (x). 
(3.1) 

It will be convenient to allow for the possibility that 
the Lagrangian may depend on x explicitly. Then, 
under a variation (3.1), the change in L is 

8 There could of course be a constant factor multiplying (2.10), 
but this can be absorbed by a trivial change of definition of A a ~ 
and Ta. 

Sa The discussion here applies only to semisimple groups since 
otherwise gab is singular. (I am indebted to the referee for this 
remark.) 

where aLI axP. denotes the partial derivative with fixed 
x. It is sometimes useful to consider also the variation 
at a fixed value of x, 

l5oX= X'(x)-x(x) =I5X-l5xP.X,p.. (3.2) 

In particular, it is obvious that 150 commutes with ap', 
whence 

ax.p= (ax),p.- (ax"),p.x, •. (3.3) 

The action integral 

over a space-time region 12 is transformed under (3.1) 
into 

1'(12)= f L'(x')lIa-x'p.lla4X. 
o 

Thus the action integral over an arbitrary region is 
invariant if9 

oL+ L(l5xp.) ,1>=l5oL+ (lixp) ,1'=0. (3.4) 

This is of course the typical transformation law of an 
invariant density. 

We now consider the specific case of Lorentz trans­
formations, 

I5xp.= IOP.-X·+IO", I5X= !1O"·Sp.X, (3.5) 

where lOP. and 101'·= -10·" are 10 real infinitesimal param­
eters, and the S". are matrices satisfying 

Sp.+Svp=O, 
[S"v,Sp .. ] = 'TIvpSp .. +'TI" .. Svp-'TIv..spp-'TI"pSv .. = !f"v"Ap.S ••. 

From (3.3) one has 

ax,I'=!€P"SpuX,,,-€PI'X,p. (3.6) 

Moreover, since (l5x"L,=lO pp=O, the condition (3.4) 
for invariance of the action integral again reduces to 
I5L=O, and yields the 10 identitieslO 

aL/axp=L,p- (aL/ax)x,p- (aLjax,,,)x,,,p=O, (3.7) 

(aLj ax)Sp.x+ (aLj ax ,p)(Sp .. x ,I' 
+'TIl'pX,u-'TI" .. X) =0. (3.8) 

These are evidently the analogs of the identities (2.2), 
and we shall assume that they are satisfied. Note that 
(3.7), which express the conditions for translational 
invariance, are equivalent to the requirement that L 
be explicitly independent of x, as might be expected. 

As before, the equations of motion may be used to 
obtain 10 conservation laws which follow from these 
identities, namely, 

Tp.p.p=O, (S"pu-xpTP. .. +x .. T"p),,,=O, 
----

v See L. Rosenfeld, Ann. Physik 5, 113 (1930). 
)0 Compare L. Rosenfeld, Ann. inst. Henri Poincare 2,25 (i931). 
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where 

Tl'p= (aLjax,l')x,p-ol'pL, Sl'pa= - (aLjax,,,)Spax. 

These are the conservation laws of energy, momentum, 
and angular momentum. 

It is instructive to examine these transformations in 
terms of the variation oox also, which in this case is 

oox= -EPapx+!ea(Spa+xpaa-Xaap)x. 

On comparing this with (2.1), one sees that the role of 
the matrices Ta is played by the differential operators 
-al' and Spa+xpaa-xaap. Thus, by analogy with the 
definition (2.3) of the currents J"a, one might expect 
the currents in this case to be 

Jl'p= (aLlax,,,)x,p, Jl'pa=Sl'pa-X~l'a+XaJl'p, 

corresponding to the parameters e, Epa, respectively. 
However, in terms of 00, the condition for invariance 
(3.4) is not simply ooL=O, and the additional term 
oxpL,p is responsible for the appearance of the term L,p 
in the identities (3.7), and hence for the term ol'pL in T"p. 

4. GENERALIZED LORENTZ TRANSFORMATIONS 

We now turn to a consideration of the generalized 
transformations (3.5) in which the parameters EI' and 
E"V become arbitrary functions of position. It is more 
convenient, and clearly equivalent, to regard as inde­
pendent functions EI'V and 

since this avoids the explicit appearance of x. Moreover, 
one could consider generalized transformations with 
~I'= 0 but nonzero E"v, so that the coordinate and field 
transformations can be completely separated. In view 
of this fact, it is convenient to use Latin indices for Eij 

(and for the matrices Sii), retaining the Greek ones for 
~I' and x!'. Thus the transformations under considera-
tion are 

or 
(4.1) 

(4.2) 

This notation emphasizes the similarity of the Eij 

transformations to the linear transformations discussed 
in Sec. 2. These transformations alone were considered 
by Utiyama.3 Evidently, the four functions ~I' specify 
a general coordinate transformation. The geometrical 
significance of the Eij will be discussed in Sec. 6. 

According to our convention, the differential operator 
a" must have a Greek index. However, in the Lagrangian 
function L it would be inconvenient to have two kinds 
of indices, and we shall, therefore, regard L as a given 
function of X and Xk (no comma),ll satisfying the iden­
tities (3.7) and (3.8). The original Lagrangian is then 

11 Note that since we are using Latin indices for So; the various 
tensor components of X must also have Latin indices, and for 
spinor components the Dirac matrices must be ')'k. 

obtained by setting 
Xk=Ok"X,I" 

It is of course not invariant under the generalized 
transformations (4.1), but we shall later obtain an 
invariant expression by replacing Xk by a suitable 
quantity x; k. 

The transformation of X,,, is given by 

(4.3) 

and so the original Lagrangian transforms according to 

oL= -~p'I'Jl'p-!Eij,I'Sl'ii' 

Note that it is Jl'p rather than Tl'p which appears here. 
The reason for this is that we have not included the 
extra term L(ox"),1' in (3.4). The left-hand side of (3.4) 
actually has the value 

oL+ L(oxl') ,,,== - ~P'I'TI'p-tEij'I'S"ij. 

We now look for a modified Lagrangian which makes 
the action integral invariant. The additional term just 
mentioned is of a different kind to those previously 
encountered, in that it involves L and not aLI aXk. In 
particular, it includes contributions from terms in L 
which do not contain derivatives. Thus it is clear that 
we cannot remove it by replacing the derivative by a 
suitable covariant derivative. For this reason, we shall 
consider the problem in two stages. We first eliminate 
the noninvariance arising from the fact that x.!' is not 
a covariant quantity, and thus obtain an expression L' 
satisfying 

oL'=O. (4.4) 

Then, because the condition (3.4) for invariance of the 
action integral requires the Lagrangian to be an in­
variant density rather than an invariant, we make a 
further modification, replacing L' by ~', which satisfies 

(4.5) 

The first part of this program can be accomplished 
by replacing Xk in L by a "covariant derivative" x; k 

which transforms according to 

(4.6) 

The condition (4.4) then follows from the identities 
(3.8). To do this it is necessary to introduce forty new 
field variables. We consider first the Eij transformations, 
and eliminate the Eii,1' term in (4.3) by setting12 

(4.7) 

where the A ii,,= -A jil' are 24 new field variables. We 
can then impose the condition 

(4.8) 

which determines the transformation properties of A ii" 

12 Our A;; I' differs in sign from that of Utiyama.3 Compare 
footnote 6. 
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uniquely. They are 

OA iiI' = ~iAA kil'+~iAA ikl'_ ~v.,A iiv-~ij.I" (4.9) 

The position with regard to the last term in (4.3) is 
rather differ,ent. The term involving ~ii.1' is inhomo­
geneous in the sense that it contains X rather than X,I" 
just like the second term of (2.4), but this is not true 
of the last term.13 Correspondingly, the transformation 
law (4.8) of XII' is already homogeneous. This means 
that to obtain an expression X;k transforming according 
to (4.6) we should add to XII' not a term in X but rather 
a term in XII' itself. In other words, we can merely 
multiply by a new field: 

(4.10) 

Here the hkl' are 16 new field variables with transforma­
tion properties determined by (4.6) to be 

(4.11) 

It should be noted that the fields hkl' and A iiI' are quite 
independent and unrelated at this stage, though of 
course they will be related by equations of motion. 

We have now found an invariant L'. We can easily 
obtain an invariant density 2' by multiplying by a 
suitable function of the fields already introduced: 

)!;'=S)L'. 

Then (4.5) is satisfied provided that S) is itself an 
invariant density, 

oS)+~I'.I'S)=O. 

It is easy to see that the only function of the new fields 
which obeys this transformation law, and does not 
involve derivatives, is 

S)= [det(hkl')]-l, 

where the arbitrary constant factor has been chosen so 
that S) reduces to 1 when hkl' is set equal to Okl',14 

The final form of our modified Lagrangian is 

)!;{X,x,l',hkl',A iiI'} =S)L{X,X; k}. 

(We can drop the prime without risk of confusion.) It 
may be asked whether this Lagrangian is unique in the 
same sense as the modified Lagrangian L' of Sec. 2, and 
in fact it is easy to see that it is not. The reason for this 
is that if one starts with two Lagrangians Ll and L2 
which differ by an explicit divergence, and are therefore 

13 The reason for this may be seen in terms of the variation 
ooX given by (4.2). The analogs of the matrices Ta are clearly -ill' 
and Sih so that the presence of the derivative 'X. " in the last term 
of (4.3) is to be expected. By analogy with (2.6) we should expect 
the covariant derivative to have the form 

X; k=Ok"'X. "+!A ij kSijX-A"kO.x. 

Because of the appearance of derivatives, the first and last terms 
can be combined in the form hk"'X.", where hk"=lh"-A"k. If we 
then set Ai; k=hk"A iiI" we arrive at the same form for X;k as that 
obtained in the text. 

U Multiplication of the entire Lagrangian by a constant factor 
is of course unimportant. 

equivalent, then the modified Lagrangians 21 and 22 
are not necessarily equivalent. Consider for example the 
Lagrangian for a real scalar field written in its first-order 
form 

Ll = 7r k cP ,k- i7rk7rk- im2cp2. (4.12) 

This is equivalent to 

(4.13) 

but the corresponding modified Lagrangians differ by 

21- 22=S)(7r k CP);k 

(4.14) 

which is not an explicit divergence. Thus in order to 
define the modified Lagrangian 2 completely it would 
be necessary to specify which of the possible equivalent 
forms of the original Lagrangian is to be chosen. The 
reasons for this situation and the problem of choosing 
the correct form are discussed in the Appendix. 

As in Sec. 2, one may define modified "currents" in 
terms of L=L{X,X;k} by 

~kl'=a2jahkl'=S)bil'{ (aLjax;k)x;;-ok;L}, (4.15) 

@5!';;=-2(a2jaAii,,)=-S)hk"(aLjOX:k)SiiX, (4.16) 

where bil' is the inverse of hi", satisfying 

To express the "conservation laws" which these currents 
satisfy in a simple form, it is convenient to extend the 
definition of the covariant derivative XI" (not X:k). 
Originally, it is defined for X and, therefore, by a trivial 
extension for any other quantity which is invariant 
under ~I' transformations, and transforms linearly under 
~ii transformations. We wish to extend it to any quantity 
which transforms linearly under Eii transformations, by 
simply ignoring the ~" transformation properties alto­
gether. Thus, for example, we would have 

(4.17) 

according to the ~ij transformation law of hi". We shall 
call this the E covariant derivative. Later we shall define 
another covariant derivative which takes account of ~I' 
transformations also. 

One can easily calculate the commutator of two 
~ covariant differentiations.1• This gives 

(4.18) 
where 

This quantity is covariant under ~ii transformations, 
and satisfies the cyclic identity 

Rijl'vlp+Rijvpll'+RijpI'IV=O. 

16 Note that this could not be done without extending the 
definition, since one must know how to treat the index on Xl". 
Here, as in Sec. 2, we simply ignore it. 
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It is thus closely analogous to FBl'v, Note that Riil'v is 
antisymmetric in both pairs of indices. 

In terms of the E covariant· derivative, the "con­
servation laws" can be expressed in the form6 

(';tk"hkl') 11'+ ';t kl'hkl'l v= !@:il'ijRi3~v, 

@:il'iill'=';tip.hjp.- ';t jp.h i iJo • 

5. FREE GRAVITATIONAL LAGRANGIAN 

(4.19) 

(4.20) 

We now wish to examine the quantity X;k' rather 
than XII" As before, the covariant derivative of any 
quantity which transforms in a similar way to X may 
be defined analogously. Now in particular X;k itself 
(unlike XI,,) is such a quantity, and therefore without 
extending the definition of covariant derivative one can 
evaluate the commutator X;kl-X;lk. However, this 
quantity is not simply obtained by multiplying 
XI"v-Xlv" by hk"h1

v, as one might expect. The reason for 
this is that in evaluating x; kl one differentiates the hk" 

in X; k, and moreover adds an extra A i k" term on account 
of the index k. Thus one finds 

X;kl-X;lk=!RiikzS'iX-CikIX;i, (5.1) 
where 

Riikl=hk"hlvRii"v, (5.2) 

Cikl= (hk"hlv- hl"hkv)bil'l v. (5.3) 

Note that (5.1) is not simply proportional to X, but 
involves X;i also.18 

We now look for a free Lagrangian ~o for the new 
fields. Clearly ~o must be an invariant density, and if 
we set 

~o=,pLo, 

then it is easy to see, as in the case of linear transfor­
mations, that the invariant Lo must be a function only 
of the covariant quantities Riikl and Cikl. As before, 
there are many possible forms for ~o, but there is a 
difference between this case and the previous one in 
that all the indices on these expressions are of the same 
type (unlike Fa"v), and one can, therefore, contract the 
upper indices with the lower. In fact, the condition that 
Lo be a scalar in two separate spaces is now reduced to 
the condition that it be a scalar in one space. In par­
ticular, this means that there exists a linear invariant 
which has no analog in the previous case, namely, 

R=Riiij. 

There are in addition several quadratic invariants. 
However, if we again choose for Lo the form of lowest 
possible degree, then we are led to the free Lagrangianl7 

(5.4) 

which differs from (2.10) in being only linear in the 
derivatives. 

16 This is another example of the fact that for ~p. transformations 
derivatives play the role of the matrices Ta. Compare footnote 13. 

17 We choose units in which K= 1 (as well as c=li= 1). 

With this choice of Lagrangian, the equations of 
motion for the new fields are 

,p(Rikjk-!OiiR )= _';tipki'" (5.5) 

- [,p(hi"h/-hi"hiv)]lv 
=S)(hk"Ckij-h/Ckik-hi"Ckki) = @:i"ij. (5.6) 

From Eq. (5.6) one can immediately obtain a strict 
conservation law 

(5.7) 
where 

~""j=,pA kiv(hj"hkV-hk"h/)-,pA kjv(h .. "h"v-hlr."h,u). 

This quantity is expressible in the form 

~"ii= -2(a~o/aA iiI') = -Ha~o;aA mnv,p.)ji,-mnkiA k1v, 

which is closely analogous to (2.12), and should be 
compared with (4.16). Equation (5.7) is a rather sur­
prising result, since @:ip.;j may very reasonably be inter­
preted as the spin density of the matter field/ 8 so that 
it appears to be a law of conservation of spin with no 
reference to the orbital angular momentum. In fact, 
however, the orbital angular momentum appears in the 
corresponding "covariant conservation law" (4.20), and 
therefore part of the "spin" of the gravitational field, 
~"ij, may be regarded as arising from this source. 
Nevertheless, Eq. (5.7) differs from other statements 
of· angular momentum conservation in that the coor­
dinates do not appear explicitly. 

It would also be possible to deduce from Eq. (5.5) a 
strict conservation law 

(5.8) 

but there is a considerable amount of freedom in 
choosing tk". The most natural definition, by analogy 
with (4.15) would be 

tA'p.= a~o/ ahk", 

and this quantity does indeed satisfy (5.8). However, 
in this case the expression within the parentheses itself 
vanishes, so that (5.8) is rather trivial. We shall not 
discuss the question of the correct choice of P" further, 
as this lies beyond the scope of the present paper.19 

It should be noted that Eq. (5.6) can be solved, at 
least in principle, for A iiI" In the simple case when @:i"ii 
vanishes, one finds20 

A iiI' = °A ij" =!bkp.(Ckij- Cijk- C iki), 

Ckii= (h,p.hiv- h/hiv)bk",v. 
(5.9) 

18 See H. J. Belinfante, Physica 6, 887 (1939), and footnote 5. 
19 It is well known in the case of the ordinary metric theory of 

gravitation that many definitions of the energy pseudotensor are 
possible. See, for example, P. G. Bergmann, Phys. Rev. 112, 287 
(1958). 

20 The OA ii p. are Ricci's coefficients of rotation. See for instance 
V. Fock, Z. Physik 57, 261 (1929). 
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In general, if we write 

!f5"ii=S)hk,.Skii, 
then 

A ii,.= OAii,.-tbk,.(Skii-Siik- S jki 
-71kS1lj-71kiS1iz). (5.10) 

If the original Lagrangian L is of first order in the 
derivatives, then Skij is independent of A iip. so that 
(5.10) is an explicit solution. Otherwise, however, A iip. 

also appears on the right-hand side of this equation. 
We conclude this section with a discussion of the 

Lagrangian for the fields Aap. introduced in Sec. 2 when 
the "gravitational" fields hk" and A iJ~ are also intro­
duced. The fields A a" should not be regarded merely as 
components of X when dealing with Lorentz trans­
formations, since one must preserve the invariance 
under the linear transformations. To find the correct 
form of the Lagrangian, one should consider simul­
taneously Lorentz transformations and these linear 
transformations. This can be done provided that the 
matrices Ta commute with the Sij, a condition which 
is always fulfilled in practice. Then one finds that Xk in 
L should be replaced by a derivative which is covariant 
under both (2.1) and (4.1), namely, 

X;k=hk"(X.,.+tA ii"SijX+Aa,.Tax). 

The commutator X;kl-X;lk then contains the extra term 

where 

with Fa,," given by (2.9). It is important to notice that 
the derivatives of Aa" in Fa,." are ordinary derivatives, 
not covariant ones. (We shall see in the next section 
that the ordinary and covariant curls are not equal, be­
cause the affine connection is in general nonsymmetric.) 
As before, one can see that any invariant function of A a" 
must be a function of Fakl only, and the simplest free 
Lagrangian for Aa" is, therefore, 

(5.11) 

6. GEOMETRICAL INTERPRETATION 

Up to this point, we have not given any geometrical 
significance to the transformations (4.1), or to the new 
fields hk" and A ii", but it is useful to do so in order to 
be able to compare the theory with the more familiar 
metric theory of gravitation. 

Now the ~,. transformations are general coordinate 
transformations, and according to (4.11) hk" transforms 
like a contravariant vector under these transformations, 
while bk

" and A ii,. transform like covariant vectors. 
Thus the quantity 

(6.1) 

is a symmetric covariant tensor, and may therefore be 

interpreted as the metric tensor of a Riemannian space. 
It is moreover invariant under the foii transformations. 
Evidently, the Greek indices may be regarded as world 
tensor indices, and we must of course abandon for them 
the convention that all indices are to be raised or 
lowered with the flat-space metric 71,,", and use g,.u 
instead. It is easy to see that the scalar density S) is 
equal to (- g)!, where g= det(g"u). 

Now, in view of the relation (6.1), hk" and bk,. are 
the contravariant and covariant components, respec­
tively, of a vierbein system in the Riemannian space.21 

Thus the foii transformations should be interpreted as 
vierbein rotations, and the Latin indices as local tensor 
indices with respect to this vierbein system. The 
original field X may be decomposed into local tensors 
and spinors,22 and from the tensors one can form corre­
sponding world tensors by multiplying by hk" or bk

". 

For example, from a local vector Vi one can form 

(6.2) 

No confusion can be caused by using the same symbol 
v for the local and world vectors, since they are dis­
tinguished by the type of index, and indeed we have 
already used this convention in (5.2). Note that 
v" = g"uvU, so that (6.2) is consistent with the choice of 
metric (6.1). We shall frequently use this convention 
of associating world tensors with given local tensors 
without explicit mention on each occasion. 

The field A i j ,. may reasonably be called a "local affine 
connection" with respect to the vierbein system, .since 
it specifies the covariant derivatives of local tensors or 
spinors.23 For a local vector, this takes the form 

It may be noticed that the relation (4.10) between 
XI,. and X;k is of the same type as (6.2) and could be 
written simply as 

(6.4) 

according to our convention. However, we shall retain 
the use of two separate symbols because we wish to 
extend the definition of covariant derivative in a differ­
ent way to that of Sec. 4. It seems natural to define the 
covariant derivative of a world tensor in terms of the 
covariant derivative of the associated local tensor. 
Thus, for instance, to define the covariant derivatives 
of the world vectors (6.2) one would form the world 
tensors corresponding to (6.3). This gives 

where 

vA;u=h/'vil u= vA.u+ rx,.uv,., 

v,.; u= bi"Vil u= v".u- rA,.uv\ 

(6.5) 

Note that this definition of r\.u is equivalent to the 

21 See for instance H. Weyl, Z. Physik 56, 330 (1929). 
22 H. ]. Belinfante, Physica 7, 305 (1940). 
23 Compare J. A. Schouten, J. Math. and Phys. 10, 239 (1931). 
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requirement that the covariant derivatives of the 
vierbein components should vanish, 

(6.6) 

For a generic quantity a transforming according to 

oa= !l:iiSija+ e' ,~~,1'a, 
the covariant derivative is defined by21 

(6.7) 

a;v=a,v+!A iivSiia+ r>.""l:A"a, (6.8) 

whereas the I: covariant derivative defined in Sec. 4 is 
obtained by simply omitting the last term of (6.8). 
Note that the two derivatives are equal for purely local 
tensors or spinors, but not otherwise. One easily finds 
that the commutator of two covariant differentiations 
is given by 

a;"v-a; v,,= !Rii"vSiia+ Rp""v'f,/a-CA"vCY;A, 

where Rp""v and CA"v are defined in the usual way in 
terms of Rii"v and Cikl. They are both world tensors, 
and can easily be expressed in terms of rA"v, in the form24 

Rp"" v = rp"",v- rp"v,,,- rPA"rA"V+ rPAVr\v, (6.9) 

CA"v= rA"v- r\". (6.10) 

Thus one sees that Rp ""V is just the Riemann tensor 
formed from the affine connection rA"v. 

From (6.6) it follows that 

(6.11) 

so that it is consistent to interpret r>.,.v as an affine con­
nection in the Riemannian space. However, the de­
finition (6.5) evidently does not guarantee that it is 
symmetric, so that in general it is not the Christoffel 
connection. The curvature scalar R has the usual form 

so that the free gravitational Lagrangian 1S Just the 
usual one except for the nonsymmetry of rA"v. It should 
be remarked that it would be incorrect to treat the 64 
components of rA"v as independent variables, since 
there are only 24 components of A ii". In fact the rA"v 
are restricted by the 40 identities (6.11). Thus there is 
no contradiction with the well-known fact that the 
first-order Palatini Lagrangian with nonsymmetric rA"v 
does not yield (6.11) as equations of motion.26 

The equations of motion (5.5) and (5.6) can be 
rewritten in the form 

Sj(R"v-!g"vR )= -~"v, 

SjCA"v= @)A"v-!oA"@)ppv-!o\@)p"p. 

(6.12) 

(6.13) 

From Eqs. (6.10) and (6.13) one sees that in the absence 
of matter the affine connection rA"v is symmetric, and 

24 This is a generalization to nonsymmetric affinities of the 
result proved in the appendix to footnote 3. See also footnotes 4 
and 5. 

25 See for instance E. Schrodinger, Space-time Structure (Cam­
bridge University Press, New York, 1950). 

therefore equal to the Christoffel connection Or >.,. v. 

(This is the analog for world tensors of °A ii"') Then R,.v 
is symmetric, and Eq. (6.12) yields Einstein's familiar 
equations for empty space, 

R"v=O. 

However, when matter is present, rA"v is no longer 
symmetric, and its antisymmetric part is given by 
(6.13). Then the tensor R"v is also nonsymmetric, and 
correspondingly the energy tensor density ~'"v is in 
general nonsymmetric, because hk" does not appear in 
~ only through the symmetric combination g"v. Thus 
the theory differs slightly from the usual one, in a way 
first no~ed by Weyl. 4 In the following section, we shall 
investigate this difference in more detai1.6 

Finally, we can rewrite the covariant conservation 
laws in terms of world tensors. It is convenient to define 
the contraction 

C"=CA,,A, 
since the covariant divergence of a vector density f" 
is then 

f";,,= fl',,,+Cl'f". (6.14) 

The conservation laws become 

~V";V-CV~V"+CA"V~VA=!Rp""v@)vPtT' 

@)"PtT;,,-C"@)"PIT= ~PIT- ~ITP' 

It may be noticed that these are slightly more com­
plicated than the expressions in terms of the I: covariant 
derivative. 

7. COMPARISON WITH METRIC THEORY 

For simplicity, we shall assume in this section that L 
is only of first order in the derivatives, so that (5.10) 
is an explicit solution for A ii". The difference between 
the theory presented here and the usual one arises 
because we are using a Lagrangian ~o of first order, in 
which hkl' and A i3~ are independent variables. The situ­
ation is entirely analogous to that which obtains for 
any theory with "derivative" interaction. In first-order 
form, the "momenta" A ii" are not just equal to deri­
vatives of the "coordinates" hk", or in other words to 
°A ii". Thus an interaction which appears simple in 
first-order form will be more complicated if a second­
order Lagrangian is used, and vice versa. 

The second-order form of the Lagrangian may be 
obtained by substituting for A ii" the expression (5.10). 
This gives 

~/=~+O~O+l~, 

where o~ and o~o are obtained from ~ and ~o by replacing 
A ii" by 0A iiI' (or equivalently rA"v by °rAJAv), and 1~ is 
an additional term quadratic in Ski;' namely, 

1~= iSj(2SiikSikLS;jkSijk+2SiitS/k). (7.1) 

In this Lagrangian, only hk" and X are treated as inde-
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pendent variables. The equations of motion are equi­
valent to those previously obtained if the variables A iiI' 
are eliminated from the latter by using (5.10). 

The usual metric theory, on the other hand, is given 
by the Lagrangian 

~"=O~+O~o, 

without the extra terms (7.1). If this Lagrangian were 
written in a first-order form by introducing additional 
independent variables A iiI" then one would arrive at a 
form identical to the one given here except for the 
appearance of extra terms equal to (7.1) with a negative 
sign. 

Thus we see that the only difference between ,the two 
theories is the presence or absence of these "direct­
interaction" terms. Now if we had not set K= 1, then ~o 
would have a factor K-l, whereas the terms (7.1) would 
appear with the factor K. They are, therefore, extremely 
small in comparison to other interaction terms. In par­
ticular, for a Dirac field, they would be proportional to 
(see Appendix) 

Kif;'Yk'Y611h k'Y611. 

Thus they are similar in form to the Fermi interaction 
terms, but much smaller in magnitude, so that it seems 
impossible that they would lead to any observable 
difference between the predictions of the two theories. 
Hence we must conclude that for all practical purposes 
the theory presented here is equivalent to the usual one. 
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APPENDIX 

In this appendix we shall discuss the remammg 
ambiguity in the modified Lagrangian. It was pointed 
out in Sec. 4 that the generally covariant Lagrangians 
obtained from two equivalent Lagrangians Ll and L2 
are in general inequivalent. One can now see that in fact 
they differ by a covariant divergence. Thus (4.14) can 
be written in the form 

~1-~2= (Sjhkl'7r ktp);I" 

but in view of (6.14) this is not equal to the ordinary 
divergence. It is clear that quite generally changing L 
by a divergence must change ~ by the covariant di­
vergence of a quantity which is a vector density under 
coordinate transformations, and invariant under all 
other transformations. This is the reason for the dif­
ference between this case and that of the linear trans­
formations of Sec. 2. 

We now wish to investigate the possibility of choosing 
a criterion which will select a particular form of L, and 
thus specify ~ completely. There does not seem to be 
any really compelling reason for one choice rather than 

another, but there are plausible arguments for a par­
ticular choice. 

The most obvious criterion would be to require that 
the Lagrangian should be written in the symmetrized 
first-order form suggested by Schwinger,26 which in the 
case of the scalar field discussed in Sec. 4 is 

This corresponds to treating tp and 7r k on a symmetrical 
footing. However, this may not in fact be the correct 
choice, because for some purposes tp and 7r k should not 
be treated in this way. In fact, the two Lagrangians 
differ in one important respect: ~l is independent of 
A iiI" whereas ~2 is not. Correspondingly, for Ll the 
quantity Skij vanishes, whereas for L2 one finds 

Sk,j= (Olci7rj- OIc,"7ri)tp. 

The conservation laws in the two cases are of course the 
same, because the quantities Tic, also differ. Now the 
tensor Skij has often been interpreted as the spin 
density,18 so that the two cases differ with regard to the 
separation of the total angular momentum into orbital 
and spin terms. The scalar field is normally regarded as 
a field of spinless particles, so that one would naturally 
expect Sic ij to vanish. This, therefore, furnishes a possible 
criterion, which would select Ll rather than L2. With 
this choice, a preferred position is assigned to the 
"wave function" tp rather than the "momenta" 7I'k, and 
the derivatives are written on tp only. In this way one 
achieves a vanishing spin tensor, because the matrices 
Si; are zero for the scalar field tp, but not for the vector 
7r k • It may be noticed that Ll is automatically selected 
if one writes the Lagrangian in its second-order form 
in terms of tp only: 

L/=!tp.ktp·k-!m2~, 

which yields the modified Lagrangian 

~l' =!Sj (gl'vtp.l'tp.v-m2~), 

equivalent to ~1.27 This should be contrasted with the 
second-order form of ~2' which is 

~2' = !Sj-l(Sjhil'tp );I'(Sjh iVtp); v- !Sjm2~, 

and clearly differs from ~/ by a covariant divergence. 
This seems to be a resonable criterion, but the argu­

ments for it cannot be regarded as conclusive. For, 
although it is true that the spin tensor obtained from 
L2 is nonzero, it is still true that the three space-space 
components of the total spin 

are zero. Thus Ll and L2 differ only in the values of the 

Z6 J. Schwinger, Phys. Rev. 91, 713 (1953). 
17 Here ~1 is a "linearization" of ~1' in the sense of T,I:W. B. 

Kibble and J. C. Polkinghorne, Nuovo cimento 8, 74 (1958), 
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spin part of the (Oi) components of angular momentum. 
Indeed, one easily sees that it is true in general that 
adding a divergence to L will change only the (Oi) 
components of Sij. Since it is not at all clear what sig­
nificance should be attached to the separation of these 
components into "orbital" and "spin" terms, it might 
be questioned whether one should expect the spin 
terms to vanish even for a spinless particle. Even so, 
the choice of Ll seems in this case to be the most reason­
able. 

For a field of spin 1, the corresponding choice would be 

Ll = -Hij(ai,j-aj,i)+t!ijjij+!m2aiai, 

which is again equivalent to the choice of the second­
order Lagrangian in terms of ai only. It yields 

Skij=adl-a;j.k, 

which is a reasonable definition of the spin density.28 
The modified Lagrangian may be expressed in terms of 
the world vector a" as 

2= -H:;>g"pgVU(a,,;v-av;,,) (ap;a-aa;p) 
+!-Pm2gl'va"av. (A.l) 

It should be noticed that the electromagnetic Lagrangian 
is not obtained simply by putting m=O in (A.l). The 
difference is that the derivatives in (A.l) are covariant 
derivatives, and since rA"v is nonsymmetric the covari­
ant curl is not equal to the ordinary curl (though both 

28 Compare footnote 18. 

are of course tensors). In fact, (A.1) with m=O would 
not be gauge invariant. The reason for the difference 
is that ai is here treated simply as a component of x, 
whereas A" is introduced along with the gravitational 
variables to ensure gauge invariance.29 

For a spinor field 1/;, symmetry between I/; and {t 
appears to demand that· one should choose the sym­
metrized Lagrangian 

L=!( {ti-ykif; ,k-{t,ki-ykif;) -m#, 
which yields the spin density 

S kij= !Ekijl{ti-y 1-Y61/;. 

Since the Lagrangian 2 must be Hermitian, one could 
not write the derivative on I/; alone. There remains, 
however, another possible choice: We could introduce 
a distinction between the left- and right-handed com­
ponents, 1/;±=!(1±i-Y6)1/;, treating one of them line fp 
and the other like 1rk. This gives the Lagrangian 

L= !{ti-yk(1 +i-Y6)I/;,k-!{t,ki-yk(1-i-Y6)1/;-m#. 
This form of Lagrangian may seem rather unnatural, 
but it should be mentioned because there are other 
grounds for treating 1/;+ and 1/;- on a nonsymmetrical 
footing.30 

29 This has the rather strange consequence that for the electro­
magnetic field the "spin" tensor Ski; vanishes, since the Lagran­
gian is independent of A;; p' 

ao See R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 
(1958). 
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The solutio'\ of the initial value problem for Bogoliubov's functional differential equation of nonequi­
librium statistical mechanics is obtained. This solution is then expanded in an infinite power series in the 
density which has the advantage that the calculation of the leading terms requires the solution of s-body 
problems only for small values of s. A derivation of the equilibrium equations by reduction from the non­
equilibrium equation is included. These results are applied to obtain a simple derivation of the Boltzmann 
equation. 

1. INTRODUCTION 

T HE statistical mechanical treatment of a classical 
many-body system usually begins with an 

"n-particle function" Dn which is the solution of an 
initial value problem for Liouville's equation. There 
are, however, two major difficulties with this approach: 

1. In the problems of interest the solution of 
Liouville's equation is equivalent to the solution of an 
n-body problem where n is very large, and is therefore 
not practical. 

2. The initial conditions are, in general, unknown. 

In an attempt to circumvent these difficulties, one 
introduces "s-particle density functions" F. defined by 
appropriate integrals of Dn. Bogoliubov has shown1 that 
for these functions, the Liouville equation can be 
replaced by a functional differential equation for a 
generating functional L[u] which generates the 
functions F 8, and has obtained an expansion of the 
solution of the equation to first order in the density. 

In Sec. 2 of this paper we derive the functional differ­
ential equation by a slight variation of Bogoliubov's 
method. The resulting Eq. (20) differs slightly from, 
but is equivalent to, the equation of Bogoliubov; how­
ever, the form of Eq. (20) facilitates a new method of 
solution. 

Section 3 contains the main result of this paper. In 
that section we obtain the solution of the initial value 
problem for Eq. (20) by a method similar to the 
method devised by B. Zumin02 for the equilibrium case. 
The solution is then expanded in an infinite power 
series in the density. In this form, it has the advantage 
that for small densities it may be approximated by a 
few terms of the expansion. Then to obtain an explicit 
expression for F. where s is small, only certain k-body 

* The research in this paper was supported by the U. S. Air 
Force under a contract monitored by the AF Office of Scientific 
Research of the Air Research and Development Command. 

1 (a) N. N. Bogoliubov, Problems of a Dynamical Theory in 
Statistical Physics (translated from Russian by E. K. Gora), Geo­
physics Research Dictorate, ASTIA Document No. AD-213317. 
Copies may be obtained by writing to the translator. (b) Much of 
the material in this reference appears in J. Phys. (U.S.S.R.) 10,257, 
265 (1946). 

2 B. Zurnino, Phys. Fluids 2, 20 (1959) j also see New York 
University Institute of Mathematical Sciences, Division of EM 
Research, Rept. No. HT-·!. 

problems, where k is small, need to be solved. Further­
more, only the initial data for certain functions F j, 
where j is small, are required. If these data are known, 
our expansion circumvents both of the difficulties 
enumerated previously. 

Sections 4 and 5 are included for the sake of com­
pleteness. In Sec. 4 we carry out a suggestion of Zumino 
and derive the functional differential equation for the 
equilibrium case by reduction from the nonequilibrium 
equation. In Sec. 5 we solve the equilibrium equation 
by a slight simplification of Zumino's method. Section 
6 is an application of the expansion obtained in Sec. 3. 
That expansion is used to obtain a very simple deriva­
tion of the Boltzmann equation. 

2. DERIVATION OF THE FUNCTIONAL 
DIFFERENTIAL EQUATION 

We consider a classical mechanical system of n 
ideniical monatomic particles contained in a finite 
volume, V. The dynamical state of the jth particle is 
described by the 6 component vector 

Xj= (q;,pj) = (q/,ql,q/,p/,pl,pl), 

where the qja are the Cartesian coordinates of the 
particle, and the pja are the conjugate momenta. Xj is 
a point in the phase-space nv defined by the restriction 
that q,is a point in the finite volume V. The Hamiltonian 
of the system is given by 

n 

JCn=L h(Xi) + Un, 
i=l 

h(x.) = T(Pi)+UV(qi), 

U n = L c/>(!qi-qjl), 
1:<0; i <IS n 

Pl 3 (Pia)2 
T(p.) =-= L -, 

2m a=1 2m 

(1) 

(2) 

(3) 

(4) 

where m denotes the mass of a particle, c/> is the inter­
particle potential, and UV(qi) is the potential due to the 
containing boundary. Thus uv(q) is constant inside V 
and rapidly approaches infinity at the boundary. 

The statistical-mechanical behavior of the system is 
described by the n-particle "probability density" 
function, Dn(t,Xl," ,xn) which is symmetric in the 

222 
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variables (Xl," . ,xn ), is normalized by the condition, 

and is a solution of Liouville's equation, 

aD.. n 3 {a:JCnaD .. a:JC .. aDn} 
-=[:JCn;D .. J=L: L: ----- . 
at i~l a=l aq;a apia apia aqia (6) 

Let St(n) denote the solution operator of the n-par­
tide mechanical system, i.e., if the system at time 
1=0 is represented by the state {Xl," ',xn }, at time t 
it will be represented by the state {xt'," ·,xn'} 

=St(n){XI, .. ,xn}. Under suitable conditions, the solu­
tion operator exists, but of course cannot be calculated 
explicitly except when n is very small. If g is a function 
of (T,XI," ,Xn+k) it is convenient to define S/n)g by 
the equation 

S/n)g( T,XI, .. ,X .. +k) 
=g(T,St(n){XI,' . ,x .. }, Xn+l," ·,Xn+k).3 (7) 

In terms of the solution operator, one may express 
the solution of the initial value problem for Liouville's 
equation in the form 

Dn(t,XI, .. ,xn ) = S_t(n) D .. (O,XI,· .. ,xn). (8) 

However, since S_t(n) cannot be calculated, and since 
Dn(O,xl,' .. ,xn) is in general unknown, the solution 
[Eq. (8)J is of no practical value. 

We introduce the s-particle density functions 

F n.s(t,XI,· .. ,x.) = v'i Dn(t,XI,'" ,x .. )dx.+!· . ·dxn; 
!Iv (9) 

s=O, 1, 2, .... 

It follows that F n.' is symmetric in (Xl,' .. ,X.), F n.O= 1, 
and 

r ~Fn .• dxI' .. dx.= r DndxI' .. dxn=l; 
J!lV V, J!lV 

s=1,2, .... (10) 

We now set V= V In and introduce the functional 

.. 
xII [1 +vu(X.)]dXI· . ·dx .. , (11) 

;=1 

which is defined on the domain of functions u(x) for 
which the integral converges. By functional differen­
tiation4 we obtain 

.. 
x II [1+vu(xi)Jdx.+! .. ·dx .. ; (12) 

s=O, 1,2, ... , n; 

---F .... (t,XI,·· ·,x.); o'Ln I n! 

OU(XI)' . ·ou(x.) ,,=0 n'(n-s)! 

s=O, 1,2, "', n. (13) 

With the aid of Eq. (13), L .. may now be expressed 
as a (finite) series expansion around u=O: 

L n[t,u]=l+:E ~(1-~)'" (1-S-l) 
.=1 s! n n 

X r Fn .• (t,XI,·· ·,X.)U(XI)·· ·U(X.)dXl·· ·dx,. (14) 
J!lV 

A differential equation for Ln may be obtained by 
multiplying Eq. (6) by 

.. 
II [1 +VU(Xi)], 
i=l 

and integrating with respect to Xl, .. " X .. over nv. We 
obtain 

aL.. .. i { .. } -=L: [1+VU(Xk)] h(xk);D .. II[1+vu(xi)] dXI· .. dxn 
at k=l !Iv i=1 

i;6k 

+ L r [1+VU(Xr)][1+vU(X,)]{cI>( lqr- q8 1); D .. ji [1+vu(xi)] }dXi" ·dx ... 
l<r<s<n J!lV .=1 

- - sir6-r, 

(15) 

By making use of the symmetry of Dn Eq. (15) becomes 

aL .. =nf [1 +VU(XI)]{ h(XI); r Dn ir [1 +vu(xi)]dx2' . ·dx .. }dXI 
at Ilv J!lV ,=2 

n(n-l) i {£ n } + [1+vu(xl)][I+vu(x2)] cI>(lql-q21); D .. ;rr [1+vu(xi)]dx3" ·dxn dxldx! 
2 !Iv • !Iv ,=3 

(16) 

1 i {oLn} 1 f {0
2 

L.. } =- [1+vu(xI)] h(xl);-- dXI+- [1+vu(xI)][I+vu(x2)] cI>(/ql-q2j); . dxldx2. 
V !Iv OU(XI) 2v2!1v OU(XI)OU(X2) 

----
3 Thus St(n) acts on the first n of the variables Xi appearing in g. 
• V. Volterra, Theory of Functionals (B1ackie and Son, Limited, London, England, 1931). 
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We now let n ~ 00 and V ~ 00 in Eqs. (14) and (16) 
in such a way that v= V /n is finite. If we set 

L[t,u]= lim Ln[t,u], 

then from Eq. (14) 

'" 1 f L[t,u]=l+L: - F,(t,xI," ·,x.) .-1 s! 

Here 
XU(Xl)' . 'U(X,)dXl' . ·dx •. 

F.(t,Xl' .. ,x.) = lim F n •• (t,Xl,· .. ,x.). 
n-+'" 
V-+", 

(17) 

(18) 

(19) 

X[cf>(l ql-q2i); o2L ldX1dX2. (20) 
OU(Xl)OU(X2) 

It follows from Eq. (18) that 

F.(t,Xl,·· ·,x.) . o'L I 
OU(Xl)' . ·ou(x,) u~o 

(21) 

Equation (20) is the functional differential equation 
which we shall solve in the next section. The solution L 
is called the "generating functional" because it gener­
ates the functions F. by means of Eg. (21). We have 
derived Eq. (20) by the method of Bogoliubov1 with a 
slight modification, and our equation apparently differs 
slightly from the corresponding Eq. (7.9) of Bogoliubov. 
However, the difference is only apparent. The two 
equations can be shown to be equivalent, and it will 
be seen that our form is more suggestive of how to 
proceed in solving the equation. 

By applying the operator 

O· I 
OU(Xl)" ·ou(x.) u=o 

to Eq. (20) one can obtain the infinite system of 
"hierarchy" equations 

aF. 1 f 
-=[H.;F.]+- [L: cf>(/q,-q'HI);F'+l]dxS+l; 
at v 1<><s 

where 

• 
H.=L: T(P.)+U.; ,-I 

- - s=1,2, ... , (22) 

U.= L: cf>(lq,-q;j); 
1~;<j~s 

The system (22) is equivalent to the single equation 
(20). 

3. SOLUTION OF THE FUNCTIONAL 
DIFFERENTIAL EQUATION 

In order to solve Eq. (20) we begin by examining the 
case of zero density, 1/v=O. We shall use superscript!! 
"0" to denote this case. Thus5 

XW(Xl)' . ·w(X.)dXl· . ·dx., (24) 

(25) 

(26) 

and Eq. (22) reduces to 

aF.O 
-=[H.;F,O]; s=1,2,···. (27) 

at 

The solution of Eq. (27) is immediately obtained in 
terms of the solution operator S/B) corresponding to 
the Hamiltonian, H •. It is given by 

F.°(t,Xl,· .. ,X.) = S-t (8)F.o (0,X1, ... ,x.); 
s= 1, 2, .... (28) 

On inserting this expression in Eq. (24) we obtain the 
solution of Eq. (25) subject to the initial conditions 

XW(Xl)' . ·w(X.)dXl· . ·dx., (29) 

where the F .0 (O,Xl, ... ,x.) are the given initial data. 
In order to solve the general equation (20), we observe 

that the form of the latter suggests that we try a 
solution of the form 

L[t,u]=LO[t,w]; w(x)=u(x)+ (l/v). 
Then 

oL no 
--=--, 
OU(Xl) ow (X1) 

o2L o2Lo 

OU (Xl)OU (X2) ow (X1)OW(X2): 

aL aLa 
-=-, 
at at 

(30) 

and inserting in Eq. (20) we see at once that that 

s = 1, 2, 3, ., '. (23) 5 It is convenient now to denote the arbitrary testing functions 
by w instead of u. 
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equation is satisfied by virtue of the fact that LO satisfies 
Eq. (25). 

But Eq. (20) must be solved subject to the initial 
conditions' 

00 1 J L[O,u]=£[u]=l+L: - F.(O,Xl'· . ,x.) 
.~l s! 

Now, from:Eq. (33) 

08Q 00 1 f oi+.£ 
L: - S_,<i+·)-------

OW (XI) .. ·ow(x.) i~ j! OU(Xl)' . ·ou(Xi+.) 

XW(Xo+l)' . ·w(x.+i)dx.+1· .. dx,+;, (36) 

XU(XI)" ·iI(x.)dxI·· ·dx,. (31) and from Eq. (31) 

The functions F .(O,Xl' .. ,x.) are the given initial data. 
In terms of Eq. (30) this becomes 

LO[O,w]=£[U]i u=w- (l/v). (32) 

The main result of this paper is the general solution 
of Eq. (20) defined by Eq. (30). If LO[I,w] is the solution 
of the initial value problem for Eq. (25) with initial 
conditions presented in Eg. (32), then L[t,u] is the 
solution of the initial value problem for the general 
equation (20) with initial conditions presented in Eq. 
(31). 

The method we have used in obtaining this solution 
closely resembles the method devised by Zumin02 to 
solve the corresponding functional differential equation 
for the:equilibrium case. This is discussed in Sec. 5. 

We now proceed to obtain expansions of the functions 
F .(&,XI' .. ,x.) in powers of the density, 1/v. For this 
purpose it is convenient to introduce a functional of two 
variables6 

00 1 J Ok£ 
Q[t,u,w]=l+L: - S_,(k)-----

k-l k! OU(Xl)' . 'OU(Xk) 

XW(Xl)' . 'w(xk)dxl" ·dXk. (33) 

Now from Eqs. (24) and (32) 

okLO[O;w] \ 

OW(Xl)' . 'OW(Xk) W=O 

Ok£ \ 

Henc~ from Eq. (28) 

Q[t,u,W] \ =1+I: ~ JFkO(t,XI," 'Xk) 
0.-1/_ k=l k! 

XW(XI)" 'w(xk)dxl" . dXk=LO[t,w]. (34) 

From Eqs. (21), (30), and (34) 

F.(t,Xl' .. ,x.) 
o'LO[t,w] \ 

OW (XI) •• ·Ow(x.) w=l/" 

6 This functional is needed in the analysis in order to avoid 
expressions involving divergent integrals. 

We now insert Eq. (37) in Eq. (36) i the resulting 
double series can be rearranged and evaluated for 
u= -w. We obtain 

In this integral we introduce the transformation 

We then interchange integration and summation over 
the index j, and set w= Ilv. The result is 

F.(t,Xl" .,x.)=I: (~)kJ[t (-l)k-i T_,(i+.) 
k~ V i~ j!(k- j)! 

XFk+.(O,XI,· .. ,Xk+.) ]dX.+l' . ·dX.+k, (38) 

s=1,2, "', 

where the operator T t (') is defined by 

Tt(·)g(Z,Xl,. .. ,X.+m ) = g(Z,St('){ Xl, .• ,X.}, 
St(I)Xo+l,' .. ,St(1)x.+m). (39) 

This is our expansion of F. as a power series in the 
density. 

In order to check the results, one can show in a 
straightforward manner that Eq. (38) satisfies the 
system of Eqs. (22). To verify that the initial conditions 
are satisfied, we may set 1=0 in Eq. (38). Since T o(') is 
the identity operator, the integrand in Eq. (38) reduces 
to 
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But 

k (-l)k-i 
L--­
i=O j! (k- j)! 

1 k (k) 1 L . (-1)k-b -(1-1)k=0, 
k! i~O J k! 

for k= 1,2, .. '. (40) 

Thus every term in Eq. (38) vanishes, except the first, 
and the series reduces to F. (O,Xl; .. ,x.) as required. 

The series expansion (38) is a very useful form of the 
solution. We observe that for small densities (1/v«I), 
the function F. is approximated by terminating the 
series after a few terms. Now the functions F 8 of main 
interest are those for which s is small, and for these 
functions, the calculation of the leading terms of the 
expansion requires a knowledge only of solution 
operators St(kJ where k is small and initial data 
F i(O,Xl,' .. ,Xi) where j is small. 

The leading terms of Eq. (38) are given by 

F.(t,Xl' .. ,x.) = T _t(8)F.(0,Xl, .. ,x8) 

+~ f [T_t(8+1JF8+1(0,Xl,' ',X8+1) 

Bogoliubov1 obtains the equation 

F.(t,Xl' .. ,x.) =S-t(') F8(0,Xl, .. ,x8) 

+~ ({ST_t(8 J![ L q,(lq;-q.+ll);S-T(S+l) 
v . 0 1:5;:5s 

XF8+l(0,Xl, .. ,x.+l)Jdx8+l }dT+O(Ifv2 ). (42) 

With a little manipulation it is possible to reduce Eq. 
(42) to the simpler form of Eq. (41). 

4. DERIVATION OF THE EQUILIBRIUM EQUATION 

In this section we shall derive the well-known func­
tional differential equation for the equilibrium case by 
reduction from the general equation (20). The first 
step is to derive a new form of Eq. (20) by expanding 
the Poisson brackets that appear in that equation [as 
is done in Eq. (6)J and by using the following identity 
which is obtained by interchanging integration variables: 

f[Uh)+~][U(X2)+~]aq,( I ql-q2i) 
v v aq2a 

a fPL 
x dx1dx2 

aha OU(Xl)OU(X2) 

With the aid of Eq. (43), Eq. (20) now becomes 

(44) 

Let us now consider time-independent solutions 

(45) 

Then aLI at= 0, and Eq. (44) will be satisfied if 

This equation is an identity in Xl= (qt,Pl)' It is suf­
ficient for Eq. (44), but not necessary. 

Following a suggestion of Zumino,2 let us now 
consider solutions of Eq. (46) for which 

where 0 is a constant and 

c= f exp[ -p2/2mOJdp. (48) 

Let (L)[uJ denote the restriction of L[uJ to the domain 
of functions u= u(q) which are independent of p. Then 
if Eq. (47) is assumed, 

and 

(L)[uJ=l+ t ~ fh(ql" ',qk)U(ql)'" 
k~l k! 

Xu(qk)dql" ·dqk. (SO) 
X dx1dx2. (43) 

apIa OU(XI)OU(X2) By functional differentiation of Eqs. (49) and (SO) it is 
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easy to show that 

. [P;] o8(L) c-BIT exp -- , 
i=l 2m8 OU(ql)" ·ou(q.) 

and 
(51) 

a o2L 

apia OU(Xl)OU(X2) 

pia o2L 

m8 OU(Xl)OU(X2) 
(52) 

With the aid of Eq. (52), Eq. (46) becomes 

f. Pta{~~+:f[U(X2)+:] 
a=1 iJq1a OU(Xl) 8 v 

iJcp(lql-q21) o2L } 
X ~2 =Q ~~ 

iJq1a OU(Xl)OU(X2) 

If we restrict Eq. (53) to functions u=u(q) and use Eq. 
(51) we obtain 

and since PI is arbitrary, 

iJ tJ(L) 1 f[ 1]acp( lql-q21) - --+- U(q2)+- ----
aq1a ou(ql) 8 v aq1a 

o2(L) 
X dq2=O; a=l, 2, 3. (55) 

OU(ql)OU(q2) 

Equation (55) is the well-known1a •2 equation of 
equilibrium theory, where 8= kT, k is the Boltzmann 
constant, and T is the absolute temperature. This 
equation is usually derived from an assumption about 
the explicit form of Dn. This form is given by 

where 

(57) 

The purpose of this section has been to show that 
the equilibrium equation (55) can be derived from the 
general equation (20) by using the assumption pre-

sented in Eq. (47). It is not surprising that this can be 
done, in view of the fact that Eq. (47) is a consequence 
of Eq. (56). To see this, we use Eqs. (19) and (9) to 
obtain 

F.(t,Xl," .. ,x.) 

= lim Fn .• = lim VBf Zn- I 

v:: v:: ov 

xexp[ -~Hn]dX'+l" ·dxn 

= lim V'c-' exp[ __ 1_(PI2+ ... +N)] 
v:: 2m8 

X fv Qn-I exp[ -~Un]dq'+l" ·dqn. (58) 

From Eq. (58) we see at once that Eq. (47) follows with 

j.(ql,· .. ,q.) = lim VBf Qn-I exp[-:u n]dq.+1' . . dqn. 
n--+oo v 8 
V--+oo (59) 

Before proceeding to the solution of Eq. (55) we 
point out that that equation is also equivalent to an 
infinite system of equations, given byla 

iJjk 1iJUk 1 fiJcp(lql+qk+ll) 
-+--jk+- jk+ldqk+l=O, 
aq1a 8 iJq1a 8v aq1a 

a=1,2,3; k=1,2, .... (60) 

5. SOLUTION OF THE EQUILIBRIUM EQUATION 

In this section we shall solve the equilibrium equation 
(55) by a slight simplification of a method by Zumino.2 

As in Sec. 3 we begin by examining the case of zero 
density, 1/v= O. We again use superscripts "0" to denote 
this case. Thus 

XW(ql)' . ·w(qk)dql· . ·dqk, (61) 

a o(LO) 1 f iJcp(lql-q21) 
---+- W(q2)----
aql" ow(ql) 8 aqla 

o2(LO) 
X dq2=O; a=1,2,3, 

OW(ql)OW(q2) 
(62) 

oB(LO) I 
j.O(ql,· .. ,q.) , 

OW(ql)" ·ow(q.) w=O 
(63) 

and Eq. (60) reduces to 

aN 1 iJUk 
-+--jkO=O; a=1,2,3; k=1,2, .... (64) 
aq1a () iJq1a 
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In order to solve Eq. (64) ,set 

N=Ck(ql,·· ·,qk) exp[ -~Uk l k=1,2,···. (65) 

From Eq. (64), 

Since Ck(ql,··· ,qk) is symmetric in its arguments, it 
follows that Ck is a constant. In order to determine the 
constant, we observe that by letting n-HK', V-too in 
Eq. (10) we obtain 

Now from Eq. (47) 

lim ~f j.dql·· ·dq.=1, v __ V· v (68) 

and from Eq. (65) 

lim ~ r exp[-~U.]dql .. ·dqB=~. (69) V-KOvsJv 8 C. 

It is clear from Eq. (69) that C.= 1 for potentials 
1/>(,) which vanish sufficiently rapidly as r-t 00. We 
shall therefore impose as a condition on I/> that the left­
hand side of Eq. (69) be equal to 1 for s= 1, 2, 3, .... 
It follows now from Eq. (65) that 

The solution of Eq. (55) for nonzero density can be 
obtained from the zero density solution in a manner 
very similar to the procedure used in the nonequi­
librium case. We begin with a trial form of the solution 
slightly more general than the one used in Sec. 3: 

(L)[u]= (LO)[w]; w=a(u+1/v); a=const. (71) 

By functional differentiation we have 

o'(L) o8(LO) 
a·'-----

OU(ql)· . ·ou(qs) OW(ql)· . . ow(q.)' 
(72) 

and substituting in Eq. (55) we see that the latter 
equation is satisfied because (LO) satisfies Eq. (62). 

In order to determine the constant, a, we observe 
first that since Un is a function only of the coordinate 
differences (qi-qi), Eq. (59) implies that h(ql) is a 

constant, and Eq. (68) implies that the constant is 
unity. Thus 

h(ql) = 1. (73) 

Now from Eqs. (73) and (SO) it follows that 

o(L) I -1· (L)[O]=1. 
OU(ql) 0.-0 - , 

(74) 

This in turn implies that 

(75) 

We shall see that Eq. (75) suffices to determine the 
constant a. 

Now from Eqs. (SO) and (72), 

j.(ql,· .. ,q.) 
o'(L) I 

OU(ql)· . ·ou(q.) u=O 

-as o'(LO) I 
OW(ql)· . ·ow(q.) 1D=<J/V 

(76) 

It would appear that we need only differentiate Eq. (61) 
s times and set w=a/v to obtain an explicit formula for 
j.(ql, . .. ,q.). However, this is incorrect because jkO"", 1 
for large I q.-q;1 and the integrals in Eq. (61) converge 
only for testing functions w(q) which vanish sufficiently 
rapidly at infinity. For w=a/v, the integrals diverge. 
The difficulty is that Eq. (61) does not represent the 
functional (LO)[w] in a sufficiently large domain of 
functions w(q). What is needed is an "analytical con­
tinuation" of the representation of the functional. 

Such an analytic continuation can be obtained by the 
following transformation which was suggested by 
Zumino.2 

(LO)[w]=exp[(MO)[w]], (MO)[w]=log(LO)[w], (77) 

Now 

Proceeding in this manner, we may obtain the following 
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N(ql)= gI0(ql), 

N(ql,q2) = gl(ql)gI0(q2)+ g20(ql,q2), 

j sO(ql,q2,qa) = g10 (ql)gI0 (q2)gI0 (qa) 

+ g20 (ql,q2)gI0(qa)+ g20 (q2,qa)gI0 (ql) 

+ g20(Ql,Q3)gI0(Q2)+g30(ql,q2,q3), 

gNQl) = N(ql), 

g20(Ql,Q2) = N(Ql,q2) - N(Ql)fNQ2), 

(79) 

gaO (ql,q2,qa) = N(ql,q2,qa)- N(Ql)N(Q2,Q3) (80) 

- N(q2)N(Ql,q3)- N(Qa)N(Ql,Q2) 

+2N(Ql)N(q2)N(Q3), 

etc. Functions gkO related to the fko in this manner are 
known in statistical mechanics as Ursell functions. We 
observe that except for g10 they vanish for large values 
of Iq;-Qil. 

Let 
z=a/v. (81) 

From Eqs. (77) and (75), 

(84) and (85) are convergent. If we set 

bk =~ Igko (q,ql, .. ,qk-l)dql· .. dq/C-l; 
k! 

k=2,3, •.• ; b1=1; (86) 

then Eq. (85) takes the form 

(87) 

The bk are called "cluster integrals" and are inde­
pendent of Q because the fko, and hence the gkO, are 
functions only of the coordinate differences. The 
quantity z is called the "activity." Equation (84) 
expresses h as a power series in the activity, and the 
latter is related to the density 1/v by Eq. (87). In 
order to obtain an expression for f2 as a power series in 
the density, we assume that 

00 aj 

Z=L­
i=1 vi 

and insert in Eq. (87). One obtains easily 

1 2b2 
z=---+O(l/v3), 

(88) 

(89) 5(MO) I 1 5(LO) I 1 
-- =---- =-; 
5W(Ql) w-z (LO)[z] 5W(Ql) w""" a 

(82) v v2 

and from Eqs. (76), (77), and (75) 

5
2
(LO) I 

h(ql,q2)=a2'----
5W(ql)5w(q2) w=z 

{ 
5(MO) 5(MO) 52(MO) } I 

=a2(LO)[z] ----+----
5W(ql) 5W(q2) 5w (ql)5w (q2) W=' 

= a2 { 2.+ 5
2

(MO) I } 
a2 5W(ql)OW(Q2) w=. 

(83) 

Thus from Eq. (78) 

and from Eq. (82) 

By virtue of the remark made at the end of the last 
paragraph, we see that the integrals appearing in Eqs. 

and inserting in Eq. (84) we obtain 

h(ql,q2) = 1 +g20(ql,q2)+~[f g30(qhq~3)dq3 

- 2g20(ql,q2) J g20(ql,q3)dqa ]+O(1/v2). (90) 

It can easily be shown that this result agrees with 
previously given expressions for f2' and can be used to 
obtain the virial expansion of the equation of state to 
order 1/v. Formulas for f. for s> 2 can be obtained by 
an obvious generalization of the method used for h. 
However, the solution of the functional differential 
equation, Eq. (55), is in principle already given by Eq. 
(71), where (LO) is given by Eqs. (61) and (70), and a 
is determined by Eq. (87). 

6. BOLTZMANN EQUATION 

The purpose of this section is to present a simple 
derivation of the Boltzmann equation based on the 
results of Sec. 3. 

In recent years, several authors have given derivations 
of the Boltzmann equation based on the hierarchy equa­
tions (22). Kirkwood7 ,9 has used the hierarchy equation 

71. Prigogine, Proceedings of the International Symposium on 
Transport Processes in Statistical Mechanics Held in Brussels, 
August 27-31, 1956 (Interscience Publishers, Inc., New York, 
1958). 
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for F 1, and by means of "phase space transformation 
functions" has shown that the Boltzmann equation is 
satisfied by a function obtained from F 1 by time­
averaging. Bogoliubovla has obtained the Boltzmann 
equation for Fl by assuming that for s> 1, F. depends 
on the time only through a functional dependence on Fl. 
Green8 has obtained the Boltzmann equation for the 
spatially uniform case by means of "Ursell function" 
expansions of solutions of the hierarchy equations. 

For the present derivation we are indebted to all of 
these, but our task is greatly simplified by the fact that 
we have at our disposal the explicit solution of the 
initial value problem for the hierarchy equations 
obtained in Sec. 3. The leading term of the expansion 
of that solution consists of an integral which already 
closely resembles the Boltzmann collision integral. 
Following the method of Green, we simplify this 
integral by making use of the fact that in all but a small 
portion of the initial configuration space of two par­
ticles, two-body interactions can be described in terms 
of complete collisions. Under the assumptions usually 
made in deriving the Boltzmann equation we find, in 
agreement with Kirkwood, that that equation is satis­
fied by a time-averaged density function. It appears 
likely that by using further terms of our expansion, 
which involve interactions of more than two particles, 
the method used here can be extended to obtain 
generalizations of the Boltzmann equation to higher 
densities. 

We begin by writing Eq. (41) for the case s= 1: 

Since initial data may be specified at an arbitrary time, 
Eq. (91) may be rewritten as 

Since Eq. (92) is an identity in Xl, we may replace Xl by 
ST (l)Xl. If we then introduce the transformation of the 
integration variable X2=S,(l)X2', we obtain 

1 
-[Fl(t+T, ST(l)xl)-F1(t,Xl)] 
T 

-F2(t,Xl,X2)]dq2dP2+0(1jv2). (93) 

8 M. S. Green, J. Chern. Phys. 25, 836 (1956). 
9]. G. Kirkwood, J. Chern. Phys. 15, 72 (1947). 

We now introduce a time averagelO of Fl defined by 

(94) 

We shall show that (F I ) satisfies the Boltzmann 
equation under the following assumptions: 

(I) q,(r)""'O for r~rl. 

(II) F2(t,Xl,X2) ""F I (t,xl)F 1 (t,X2) for I q2- qll ~r2, 
for some r2>0. 

(III) v»1. 

(IV) F 1 (t, ql+ Aql, PI) "" F 1 (t,ql,Pl) 
where I Aqll »rl,r2. 

Expression (II) is a generalized form of the molecular 
chaos assumption. This form of the assumption and the 
general technique which will be used to obtain the 
collision integral were suggested by a paper of Green. 8 

A detailed discussion of the assumption, which is part 
of Green's "product condition" is contained in his 
article.8 In (IV) we assume that Fl does not change 
appreciably under translations Aql where I Aqll is large 
compared to both rl (the range of intermolecular forces) 
and r2 (the correlation distance). Fl may, however, 
change considerably over distances of the order of a 
mean free path. Conditions (I) and (III) are self­
explanatory. Expressions (I)-(IV) are the assumptions 
usually made in deriving the Boltzmann equation. The 
earlier derivations required that (II) hold for all values 
of Iq2-qll. 

Let 

Then, since S.(l)Xl=S.(l) (ql,Pl) = [ql+ (z/m)pl,Pl] 
we have 

1 
=-[Fl(t+T, S,(l)xl)-Fl(t,Xl)]. (96) 

T 

We recognize Eq. (96) as the left-hand side of Eq. (93). 
In order to evaluate the right-hand side of Eq. (93) 

we choose fixed values of ql, PI, and P2 and examine the 
integration with respect to q2. The region of integration 
may be conveniently analyzed as in Fig. 1. 

10 The operation that leads from F, to (F), is sometimes called 
"coarse-graining" or "smoothing." The latter term would appear 
to be preferable. See footnote 7. 
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In Fig. 1, A, B, and C together form a cylindrical 
region with spherical end surfaces. Outside of this region 
S-T (2) {ST (l)Xl,ST (1)X2} = {Xl,X2} and the integrand in Eq. 
(93) vanishes. For points in C, the operator STell maps 
q2 into q2t1 (the position of ST (l)qz relative to fixed ql) 
and S_T(2) maps q2" into q/. For all points in C having 
the same orthogonal projection (given by the vector b) 
onto the plane P, the momenta PI' and p/ are the same, 
i.e., pI' and P2' are functions of PI, P2 and the "impact 
vector" b. From Eqs. (9) and (12) we have 

Dt(Fh (t,ql,Pl) 

=~ f dP2L dA[F1(t,qI,Pt')F1(t,q!,P2') 

- F I (t,ql,PI)F I (t,ql,P2) ] 

xIP2
:

P1 1+ r~I+O(~). (97) 

The integral in Eq. (97) represents the contribution 
to the integral in Eq. (93) from the region C except for 
an error due to the fact that the ends of the cylinder C 
are not planes but spherical segments. This error, plus 
the contributions from the regions A and B, determine 
the term (l/rv)I. In Eq. (97) we have clearly made use 
of assumptions (II) and (IV). The volume element dq2 
has been replaced by (T/m)lp2-PljdA where dA is an 
element of area on the plane P. Now from Eq. (93) 

FI(t+s, S.(1)XI) = FI(t,Xl)+O(l/v). (98) 

p 
I 
I 

,....-t-.~---::==::;::==~=::$~~_q" 
~ k-~--~_p ~ 

I 

FIG. 1. Configuration space for a binary collision. 

By inserting Eq. (98) in Eq. (94) we obtain 

FI(t,Xl) = (Fh(t,Xl)+O(l/v). (99) 

This result enables us to replace FI by (F)l in Eq. (97), 
the only change being in the term of order 1/v2• 

Let Uo be the average relative velocity of two par­
ticles. If we now choose T such that TUO »r j(j = 1, 2), the 
region C will be much larger than the regions A and B 
and the term (1/rv)I may be neglected. By (III) we 
may omit the term of order 1/v2 and the resulting 
equation is 

D, 

(100) 

This equation is the Boltzmann equation. 
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Determination of Thermodynamic Green's Functions 

GoRDON BAYK*t AND N. DAVID MEluaN* 
Lyman Laboratory of Physics, Harvard. University, Cambridge, Massachusetts 

(Received July 7, 1960) 

In the study of thermodynamic correlation functions or Green's functions, one is naturally led to a 
calculation of values of the Fourier transform of the Green's function on a discrete set of points in the 
complex energy plane. It is shown that even though these points do not in general possess a limit point 
within the region of analyticity, one may still uniquely determine the Fourier transform of the Green's 
function directly from its values at these points. 

RECENTLY, several authorsl have approached the 
quantum-mechanical many-body problem with 

the aid of thermodynamic time-dependent correlation 
functions, or Green's functions. These are determined in 
actual calculation by integro-differential equations, de­
rived from the field equations, together with a particular 
boundary condition in time. One of the features of 
this approach is that by a suitable extension of these 
functions to complex times and temperatures, the 
boundary condition becomes a condition of periodicity 
along a particular line in the complex time plane. This 
is taken into account by expressing the Green's function 
along this line in a Fourier series, and determining the 
Fourier coefficients. These turn out to be evaluations 
at a particular set of points of the extension of the 
Fourier transform of the Green's function to the 
complex energy plane. At this stage one would like to 
obtain the Fourier transform from a knowledge of the 
Fourier coefficients. If the Green's function is analytic 
at infinity in the complex energy plane, one is assured of 
a unique analytic continuation of the Fourier coeffi­
cients, because of the theorem that an analytic function 
is determined by its values on a set of points possessing 
a limit point within the region of analyticity. In general, 
however, the Green's function is not analytic at 
infinity. It is our purpose to provide the criteria by 
means of which this continuation may be uniquely 
inferred, in spite of the possibility of nonanalytic 
behavior at infinity. 

We shall discuss only the density autocorrelation 
function, since this case illustrates all the essential 
features of our argument. First we extend this function 
to complex temperature and time, in order to state the 
usual boundary condition. We next review the argument 
relating the Fourier transform to the Fourier coeffi­
cients. Then we are in a position to show how the 
transform may be inferred from the coefficients. Our 
results are applicable to other Green's functions with 
only minor modifications in the discussion. 

* National Science Foundation Predoctoral Fellow. 
t Present address: Institute for Theoretical Physics, Copen­

hagen, Denmark. 
1 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959); 

A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskii, j. 
Exptl. Theoret. Phys. (U.S.S.R.) 36, 900 (1959) [English transla­
tion: Soviet Phys. JETP 36,636 (1959)J; E. S. Fradkin, Nuclear 
Phys. 12,465 (1959). 

The thermodynamic density autocorrelation function 
is given by 

(1) 

where p(r/) is the density operator, if;t(r/)if;(r/), fJ, is 
the chemical potential, and ()+ denotes the time 
ordered product. When iT is real and positive and 
equals {3= l/KT, the trace in Eq. (1) is just the grand 
canonical average, which we assume converges ab­
solutely. As a result of this absolute convergence, F is 
analytic in the lower-half T plane, so that if we know 
F in a suitable region of the lower-half T plane, we can 
infer the grand canonical average for real {3 by analytic 
continuation. For convenience we restrict T to the 
fourth quadrant, i.e., ReT>O, ImT<O. 

For an isolated system F is a function only of the 
time difference 11 - 12• We shall denote this difference 
by I, and shall also suppress explicit reference to 
the space variables. F is conveniently analyzed by 
separately considering the functions 

F<iT(t) 

so that 

Tre-iT(H-p.N)p(O)p(/) 

Tre-iT(H-p.N) 

Tre-iT(H-p.N) 

F'T= {F>iT(t), t>O 

F<iT(/) , 1<0. 

(2) 

( 3) 

Under the assumption of absolute convergence of the 
trace, F < iT (I) converges absolutely in the closed region 
III + IV (see Fig. 1) of the complex t plane, and is, 
therefore, analytic and bounded in the open region 
III+IV. Similarly, F<iT(t) converges absolutely in the 
closed region I + II, and is analytic in the open region 
I + II. We make the natural complex extension of F 

232 
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to the region II + IV defined by 

. {F>'~(t), t in!£V 
F .. (t) = 

F<i~(t), t in II, 
(4) 

i.e., we take the time ordering in Eq. (1) to be governed 
by the real part of t. 

From the cyclic property of the trace [Tr(ABC) 
= Tr(BCA), etc., we then obtain the boundary 
condition, 

F>i~(t)=F<i~(t-T), tin III+IV. (5) 

The corresponding condition on the extended F is 

pi~(t)=Fi~(t-T), t in IV, Ret<ReT. (6) 

Since F> iT(t) is bounded in III + IV, its Fourier 
transform (in the generalized sense) exists2 along every 
line in this region parallel to the real axis, and along 
the boundaries. Similarly, F <i~(t) has a Fourier trans­
form along every line in 1+11 parallel to the real 
axis, and along the boundaries. We then have 

(7) 

The boundary condition of Eq. (5) implies that the 
Fourier transforms satisfy 

i>iT(W) = eiwT i<iT(W). 

It is useful to introduce 

in terms of which 

tin III+IV, 

f
oo dw A iT(W) 

F <iT(t) = - _e-iwt __ , t in 1+ II, 
-00 27ri 1- ei"'T 

and 

f OO dw r f'" dw' A iT (w') 1 
piT(t) = _e-iwt --- --------

-00 211' -0() 211' w+ie-w' 1-e-i""T 

00 dw' A iT(W') 1 -J + --------, 
Loo 211' w-ie-w' 1-eiw'T 

From Eqs. (8) and (9) we note that 

t real. 

f
'" Tre-iT(H-I'N)[p(t),p(O) ] 

AiT(W)=i eiwt dt. 
-YJ Tre- iT(H-I'N) 

-----

(8) 

(9) 

(to) 

(11) 

(12) 

(13) 

2 M. J. Lighthill, Introduction to Fvltrier Analysis and Generalised 
Functions (Cambridge University Press, New York, 1958), 
Sec. 2.3. 

-T t plane 

II 

m 

T 

FIG. 1. The complex t plane. 

Since 
1/ (w±ie) = P(1/w)=Frio (w), 

Eq. (12) is equivalent to 

f
oo dw l<I>iT(W+if) <I>iT(W-if)] 

FiT(t) = _e-iwt . + . , 
-00 27r 1-e-""T 1-e"'~ 

I 

t real, (14) 

where the function <I> of the complex variable z is 
defined by 

f
oo dw A i~(W) 

<I>iT(Z) = ---. (15) 
-00 211' Z-w 

By virtue of the absolute convergence of the grand 
canonical averages, the integral of the absolute value 
of A (w) exists, so that from Eq. (15) we have 

(A) <I> is analytic off the real axis; 
(B) <I> goes to zero as z approaches infinity along any 

straight line in the upper or lower half-plane. 
The boundary condition of Eq. (6) is most simply 

taken into account by determining F along the line 
from - T to T (the dotted line in Fig. 1) in the form 
of a Fourier series with period T: 

1 
FiT (t) = - L e-2"i.t/~ ijT, 

Til =integer 

tlr real, -1~tlr~1. (16) 

The Fourier coefficient i.iT is given by 

(17) 

From Eq. (10) we then have 

(18) 

It should be noted that the Fourier coefficients 
Up;T} determine F everywhere, for they determine it on 
the line from - T to T, and hence on lines contained in 
its regions of analyticity. Therefore, F is determined in 
II + IV and, in particular, its boundary value on the 
real line is determined. In principle then, one can 
determine F from U,} by summing the Fourier series 
and performing the necessary analytic continuations. 
However, it is also possible to take advantage of the 
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fact that Iv is simply <p(z) evaluated at z= 211"v/ r, and 
infer <p(z) directly from its values at these points. Since 
<p is analytic off the real axis, the problem is that of 
finding the correct analytic continuation from these 
values. Finding analytic continuations is not a problem 
in practice, since the result of a calculation is to give 
Uv} not as a sequence of numbers, but in a functional 
form ~(z) evaluated at z= 211"v/ r, va positive or negative 
integer. But the function ii>(z) is clearly not unique 
since, for example, ii>(z) and ii>(einZTz) take on the same 
values at z=211"v/r. 

We do know, however, that the desired continuation, 
<p(z), satisfies A and B. We shall show that these two 
requirements are sufficient to single out the correct 
continuation; i.e., if a ii>(z) satisfies A and B, it is 
indeed the desired <p(Z). 3 

Suppose then that there were two functions, <Pl(Z) 
and <P2(Z), both satisfying A and B and such that 
<Pl(211"v/r)=<P2(211"v/r), for all integral v. The function 
~(Z)=<Pl(Z)-<P2(Z) therefore satisfies A and B and in 
addition ~(211"v/r)=O for all integral v. We know, 
however, from Carleman's theorem4 that if a function 
g(z) is analytic and bounded in the upper half-plane 
including the real axis, and has zeros in the upper 
half plane at rnei8n with multiplicity an, but is not 
identically zero, then the series 

00 

S= L (sinOn)an/r n 
n=1 

is convergent. From A and B it follows that ~(z) is 
bounded in any region bounded away from the real 
axis. Therefore, the function g (z) = ~ (z+ 211"/ r) is 
analytic and bounded in the upper half-plane and on 
the real axis, and has zeros at r vei8·= 211"1'/ T, v= 1, 2, .. '. 
We note that (sinO)/r is positive for rei8 in the upper 
half-plane. Thus, if g is not to be identically zero, the 

3 If the weight function A (w) is known to be zero outside of a 
bounded region on the real axis, then the function <I>(z) is analytic 
at infinity and A and B dearly determine a unique continuation. 
In generai, how~ver, A (w) will not be identicl!-lly z~ro i!1 a neigh­
borhood of infinity, and <I> need not be analytic at mfiruty. 

4 E. C. Titdlmarsh, The Theory of Functions (Oxford Univer­
sity Press, New York, 1939), 2nd ed., p. 131. 

sum S must also converge, if we sum over any subset 
of the zeros of g, and ignore multiplicities. But summing 
over the set of zeros at 

we have 
rvei8p= (211"v/1 rl )e-i(argT), 

00 sin(argT) H 
E---
v-I V 211" 

H 00 1 
sin(argr) L 

211" v=1 V 

But the sum on the right is divergent. Therefore g(z) 
and, consequently, ~(z) must be identically zero in the 
upper half plane. By a similar argument, we may show 

. that ~ is identically zero in the lower half plane. 
Therefore, the criteria A and B are necessary and 
sufficient conditions for the continuation of the Fourier 
coefficients to be the correct one. 

It should be added that if one calculates only 

lim [<piT(211"v/r)], 
Im..->O 

in some open set of the real r axis, then one may still 
infer the desired continuation, <piT(Z), for r in the lower 
half plane. This is because <piT (211"v/r) is analytic in the 
lower-half T plane for each fixed v, so that a knowledge 
of its boundary value on an open set of the real r axis 
determines it in the lower half-plane. 5 Since we know 
that A and B suffice to characterize the correct continua­
tion <I>iT(Z) when r is in the lower half plane,6 <piT(Z) is 
inferred by first continuing the boundary value 
Fourier coefficients to the lower-half r plane, and then 
continuing in z, under the requirement that A and B 
be satisfied. 

6 This follows from the Schwarz reflection principle. See, c.g., 
footnote 4. 

6 Note that A and B do not suffice to characterize the correct 
z continuation of the boundary value function 

lim <I>'T(21rp/r), 
Imr-OO 

since, for example, we may add to any continuation the function 

{ 

(l-e·OT)/(z+i), z in upper half-plane 
A(z)= 

(l-e-i")/(z-i), z in lower half-plane, 

which for real positive r satisfies A and B, and is zero when 
z=21rll/r. 
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It is proved that the H theorem for an ensemble of isolated quantal systems with a discrete energy spectrum 
is false provided the systems satisfy certain broad conditions: the theorem is false for bounded many-particle 
systems with potential interaction, provided that interaction contains no repulsive singularities stronger 
than ,-2 and no attractive singularities stronger than ,-1. Ensembles of such systems behave almost per­
iodically, in the sense of H. Bohr. The entropy and the probability of finding an observable in a given 
range are both almost periodic functions of time. 

I. INTRODUCTION 

T HE H theorem for an ensemble of isolated quantal 
systems states that the coarse-grained entropy of 

the ensemble increases to its equilibrium value and 
stays there. . 

The H theorem was originally proposed by Boltzmann 
to provide a theoretical basis for the irreversibility of 
thermodynamic systems and in particular for the 
increase of entropy with time. Boltzmann's original 
statement of the theorem, by which the entropy was 
defined as a function of the state of an individual 
system, was contraverted by the well-known! objections 
of Loschmidt and Zermelo. The recurrence objection of 
Zermelo uses a theorem of Poincare by which the state 
of a finite bounded system of particles recurs over and 
over again-if not exactly, at least to within any arbi­
trary positive error. 

The H theorem was therefore restated by Gibbs in 
terms of ensembles of systems, the entropy being defined 
as a property of the ensemble. This form of the theorem 
was generalized to quantum mechanics by Pauli2 and 
by others. We shall be concerned with Pauli's form of 
the H theorem, which is also that of Tolman.3 

Pauli worked through a master equation whose 
derivation was based on the assumption of random 
phases at all times after some initial instant to, but this 
is untenable except for equilibrium systems. The 
assumption was removed by van Hove,4 who required 
initial random phases only. However, van Hove's 
derivation depends on an approximation which may be 
removed only by passing to the limit in which the 
number of particles becomes infinite, whereas Gibbs' 
form of the H theorem: was supposed to apply to en­
sembles of systems which contain a finite though large 
number of particles. 

* This work was largely performed while the author was at 
Stanford Research Institute, Menlo Park, California, with the 
support of the National Aeronautics and Space Administration, 
and partly while at the International Summer School of the Uni­
versity of Grenoble at Les Houches. 

1 D. ter Haar, Revs. Modern Phys. 27, 289 (1955), gives a 
general review of the history and foundations of the H theorem. 

2 W. Pauli in Probleme der M odernen Physik, Sommerfeld Fest­
schrift, edited by P. Debye (Hirzel, Leipzig, 1928), p. 30. 

3 R. C. Tolman, The Principles of Statistical Mechanics (Oxford 
University Press, New York, 1938). 

• L. van Hove, Physica 21, 517 (1955); 23, 441 (1957). 

Experimentally we are not able to distinguish each 
individual quantum state of a macroscopic system, only 
a large though finite set of states. Gibbs and Pauli 
define the entropy in terms of the coarse-grained prob­
abilities of finding a system of the ensemble in one of 
these sets. 

It might be supposed that coarse-graining would be 
sufficient to ensure the irreversibility of ensembles of 
isolated finite many-particle quantal systems, and that 
there would be no need to allow the systems to become 
infinite. We shall show that this supposition is incorrect, 
and that for reasonable interaction potentials Pauli's 
form of the quantal H theorem is false when the systems 
are finite. 

A set of conditions for the falsity of the theorem is given 
at the end of Sec. V. The disproof depends on the theory 
of almost periodic functions, due largely to H. Bohr.6 
The entropy is shown to be an almost periodic function 
of time. Except for the trivial case of equilibrium en­
sembles, it cannot also be nondecreasing, as will be 
seen from the definition of almost periodicity which 
follows. 

II. ALMOST PERIODICITY 

In Schrodinger representation, the state vector of a 
quantal system in a pure stationary state is a periodic 
function of time. If the system has a discrete spectrum, 
then some of the features of periodicity remain, even 
though the system may be in a nonstationary state or 
in a mixed state. The features which remain are those 
of almost periodicity, which is a generalization of pure 
periodicity. 

The amplitude of a single classical harmonic oscillator 
of unit angular frequency has the form 

A (t)=Ao sin(t+oo). (1) 

Now consider a pair of coupled oscillators, in which 
the proper vibrations of the pair have angular fre­
quencies 1 and V'l. Then the amplitude of one of the 
oscillators has the form 

A (t) =Ao sin(t+oo)+A 1 sin(V'lt+oD. 

°H. Bohr, Collected Mathematical Works, edited by E. F~lner 
and B. Jessen (Danish Mathematical Society, Copenhagen, 1952), 
Vols. 2 and 3; see also A. S. Besicovitch, Almost Periodic Functions 
(Dover Publications, New York, 1954), reissue. 

235 
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Generally this amplitude is not periodic: There is no 
nonzero value of r which satisfies the equation 

A (t)=A(t+r) (alIt). (2) 

But we can establish the existence of values of r for 
which this equation is approximately satisfied, and the 
approximation can be made arbitrarily close by appro­
priate choice of the values of r. 

Almost periodicity of a functionJ(t) is defined by the 
following property: For an arbitrarily small positive 
error t, the inequality 

IJ(t+r)-J(t) I <t (all t), (3) 

is satisfied by infinitely many values of r, these values 
being spread over the whole range - 00 to + 00 so as 
not to leave arbitrarily long empty intervals. This 
defines what Besicovitch terms a "uniformly almost 
periodic function (uap)," but since we shall not need 
to consider any other types of almost periodicity we 
allow the preceding definition. 

Every almost periodic function J(t) has a Fourier 
series which converges uniformly to the function 

<Xl 

J(t)=LA"ei"'nt, (-00<1<+00), (4) 
n=O 

where the Wn are real. Conversely, every uniformly con­
vergent Fourier series converges to an almost periodic 
function. The Fourier transform of such a function is a 
sequence of delta functions. 

III. DENSITY MATRICES 

The density matrices which represent mixed states or 
ensembles of quantal systems span a Hilbert space,6 

which we shall term "density space." In a discrete 
representation the scalar product of two elements A and 
B of this space is defined as follows: 

(A,B)=L Amm,*Bmm, = Tr(AtB). (5) 
mm' 

This quantity is unchanged under unitary transforma­
tions in state vector space. The length II !III = (!I,!I)t of a 
density matrix is never greater than 1, and if the system 
is isolated it remains constant in time. 

Almost periodicity was generalized by Bochner7 to 
include functions whose values are elements of a metric 
space, such as Hilbert space. This definition depends 
on the length used to specify the "error" which appears 
in the definition of almost periodicity. All the usual 
properties of almost periodicity carryover to this 
generalization. In particular, finite sums and uniformly 
convergent series of almost periodic functions are them­
selves almost periodic, and uniformly continuous func-

8 U. Fano, Revs. Modern Phys. 29, 74 (1957). 
7 S. Bochner, Acta. Math. 61, 149 (1933). 

tions of almost periodic functions of time are themselves 
almost periodic in time. 

Almost periodicity of solutions of the classical wave 
equation has been treated by Muckenhoupt8 and 
Bochner.9 We have considered almost periodicity of 
density matrices, using length in density space to define 
the error. 

A density matrix is an almost periodic function of 
time if for an arbitrarily small positive error t the 
inequality 

1I!I(t+r)-!l(t)11 <t (all t) (6) 

is satisfied by infinitely many values of r, these values 
being spread over the whole range - 00 to + 00 so as 
not to leave arbitrarily long empty intervals. Almost 
periodicity of the elements of a density matrix is not 
alone sufficient to ensure almost periodicity of the 
matrix, although the converse is true. 

Let !I(t) be the density matrix of a system with a 
discrete set of stationary states, labeled n= 0, 1, 2, ... , 
with energies En, some of which may be equal if there 
are degeneracies. In energy representation the matrix 
elements are 

pnn' (I) = (n I !I(t) ! n') 
= pnn' (0) exp[ih-1 (En' - En)t], (7) 

and each is a periodic function of time. Let T,,=n)(n 
be the projection operator onto the nth stationary 
state: then 

!Inn' (t) = T n!l(t)T n', (8) 

is the matrix which in energy representation has only 
one nonzero element, equal to P"n,(t) and in the location 
(n,n'). These matrices are orthogonal in density space: 

and 
<Xl <Xl 

get) = L L !Inn' (t) 
n==O 11.'-0 

<Xl <Xl 

= L L !Inn' (0) exp(iwnn'/), (10) 
n=-O 11.'-0 

where wnn,= (E",-En)/h··· !I(t) is almost periodic if 
this Fourier series, with coefficients in density space, 
converges uniformly. At this stage the discreteness of 
the energy spectrum is essential, for if the spectrum 
were continuous we should in general have a Fourier 
integral, and no almost periodicity. 

Consider the finite sum 

N N' 

aNN' (I) = L L !Inn' (I) 
11.-011.'=0 

8 C. F. Muckenhoupt, J. Math. and Phys. 8, 163 (1929). 
9 S. Bochner, Acta Math. 62, 227 (1934). 

(11) 
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as an approximation to get). The square of the error is 

<Xl <Xl 

I/g(t)-aNN' (t)IJ2= II L L gnn' (t)1I2 
n-N+l n'-N'+l 

<Xl <Xl 

L L II g'"'' (t) 112 
n=N+l n'=N'+l 

V. UNIFORM CONVERGENCE 

The mean energy E= (H) = Tr(gH) of the ensemble 
is conserved. Suppose for the present that we could 
measure m sufficiently accurately to distinguish indi­
vidual pure states. Each state m has mean energy 

(17) 

<Xl 

= L 
<Xl 

L 
and measurements of the variable m enable us to 

I Pnn' (0) 12• (12) measure the mean energy of the ensemble: 
n=N+l n'=N'+l 

The second equality follows from the orthogonality of 
the gnn' (t). Since the erroris independent oftime, aNN' (t) 
converges uniformly to get), and get) is almost periodic. 

IV. PROBABILITY AND ENTROPY 

The probability of finding a system of the ensemble 
in a typical state m of a complete discrete set of states is 

(13) 

where Tm=m)(m projects onto the state m. Tr [gTm] 
is a uniformly continuous function of g, so pm(t) is an 
almost periodic function of t. 

For systems of many particles it is not possible to 
distinguish the individual states m, but only to deter­
mine whether the state of the system lies in some range 
RM containing a finite number 11M of states. We shall 
suppose that the ranges RM do not overlap and together 
include all states m. This simplified representation of 
experimental error is analogous to coarse-graining in 
classical mechanics. The probability of finding the 
system in the range RM is 

PM(t)= L Pm (t) , (14) 
mERM 

and 

(15) 

The entropy S(t) is defined in terms of these sets of 
states by the equation 

where k is Boltzmann's constant. 
f(x) = x lnx is a uniformly continuous function of x 

when 0:::; x:::; 1; consequently each of the terms in (16) 
is almost periodic in time, and if the sum were finite, 
then Set) would also be almost periodic. 

If it is assumed that the same finite region of phase 
space makes a dominant contribution to the entropy 
at all times, and that this implies that the sum in (16) 
is effectively finite, the proof of the almost periodicity of 
the entropy is already complete. The next section pro­
vides a fairly detailed proof, and the conditions neces­
sary to carry it through. 

E est = Lm PmE(m) 

=LmPmmHmm 

=(H)-L L Pmm,Hm'm' (18) 
m m'*m 

The error in this estimate is frequently assumed to be 
negligible. We impose the weaker condition that it 
should be bounded: 

E-E':::; E est :::; E+ E'. (19) 

Now return to the coarse measurements of ranges RM • 

Let 
Eu.!) = IIM-

1 L E(m)' 

mERM 

We suppose that the error in 

EEst= LM PME(M)' 

(20) 

(21) 

the energy estimated from the coarse measurements, is 
bounded; then 

E-E" <EEst<E+E". (22) 

Generally, EE8t=FEest. 

Let the ranges M be labeled in order of increasing 
energy E(M), so that E(Ml):::; E(M2) when M 1 <Me. We 
seek an upper bound to the contribution 

<Xl 

SMo= -k L PM In (IIM-1PM) (23) 
M-Mo 

to the entropy from states M ~ M 0, where M 0 is large 
and the PM are subject to the energy condition (22). 
Such a bound may be obtained by putting all systems 
with M <Mo in the state m=O of the lowest energy 
E(m=O) and allowing EEst to take on its maximum 
possible value, so that 

'" L PME(M)=E+E". (24) 
M=Mo 

The energy scale has been chosen with E(m=O) = O. Since 
for sufficiently large Mo, E(Mo»E+E', the equality 
(24) ensures that 
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SMo may be maximized by Lagrange's method, where- M that 
by 00 

and a is determined by the equation 

L PME(M) exp( -aoE(M» 
M-o 

diverges for anyao>O. 
co 

L PMEu.f) exp[ -(l+aE(M»]=E+E". 

(AS) The "measured mean energy" EE8t is never 
(26) greater than some maximum value E=E". 

M=M o 

Therefore for any ensemble whose mean energy is E, 

00 

SMo~ L PM(1+aE(M»exp[-(l+aE(M»] 
M=Mo 

00 

~ L PM (E(Mo)-lE(M) 
M=Mo 

+aEOl-l) exp[ - (1 +aE(M»)] 

= (E(Mo)-l+a) (E+E"). (27) 

Assuming there is no finite energy range containing an 
infinite number of E(M), 

lim E(Mo)-l=O. 
Mo-+«> 

Also if 

converges for all fixed ao>O, however small, then 

00 

lim L PME(M) exp[ -(I+aoE(M»]=O, (29) 
Mo-+oo M-=Mo 

and a must be less than ao to satisfy Eq. (26) if Mo is 
sufficiently large. Therefore 

lim a=O and lim SMo=O. (30) 
Mo""" 

Therefore, we can approximate as close as we please 
to the entropy of all ensembles with fixed mean energy 
E by replacing the infinite sum (16) by a finite sum 
over the same values of M for every such ensemble. By 
the conservation of energy an ensemble has the same 
E at all times, so the infinite sum (16) converges uni­
formly to Set), and Set) is almost periodic. 

The assumptions made in the proof were 

(AI) Each system of the ensemble is isolated. 
(A2) The energy spectrum En is discrete. 
(A3) The energy "spectrum" E(m)=Hmm of the 

complete set of states used to define the entropy is 
discrete, has a minimum energy level and no limit 
points (points of accumulation). 

(A4) The density of the "measured energy spectrum" 
E(M) associated with ranges RM each containing a finite 
number PM of states m does not increase so rapidly with 

VI. SYSTEMS OF INTERACTING PARTICLES 

It is conventional to use the momenta of the inter­
acting particles for the measured coordinate m. More 
generally m labels the eigenfunctions of a complete set 
of commuting operators which themselves commute 
with the Hamiltonian Ho which the particles would 
have in the absence of interaction between them. By 
the usual choice of zero of energy, Ho is a positive 
definite operator. Typically 

(31) 

where Pi is the momentum and J.Li the mass of particle i. 
Suppose the interaction V can be represented by a 
potential function VeX), where X represents the coor­
dinates of all the particles. Then the total Hamiltonian 
His 

H=Ho+V. (32) 

A system of a finite number of independent particles 
contained in a box of finite volume with perfectly 
reflecting or periodic boundary conditions has a discrete 
energy spectrum. When the particles interact with any 
reasonable potential VeX), the discreteness of the 
spectrum is retained. A petit ensemble of such systems 
then satisfies conditions (A1)-(A3). 

Generally the ranges RM are taken to be small 
regions in the space of the momenta of all the particles. 
Typically no momentum varies by more than a constant 
q within each R M , so that the energy varies by no more 
than 

~E(M)=Li Pi'~P;/JLi 

~ Lil Pil q/JLi. (33) 

For sufficiently large M, ~E(M) is negligible in com­
parison with E(M) so that for (A4) and (AS), ECM) may 
be replaced by E(m)' PM by 1 and EEst by E.st. Assump­
tion (A4) is then satisfied by the spectrum E(m)' 

For (AS) we require to know 

Eest-E=L L Pmm,Hm'm 
m m'=Fm 

=L L Pmm,Vm'm 
m m'=Fm 

= Tr(gV)-L PmmVmm. (34) 
m 

If the interaction has no singularities stronger than ,-2, 
where, is an interparticle distance, then V mm is bounded 
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and the second term in (34) is bounded. We have 
assumed that the region which contains the system is 
finite in volume. 

If the potential energy of interaction is always greater 
than some constant V 0, then 

E;:: (V)=Tr «(IV);:: Vo (35) 

since the kinetic energy (Ho) is positive. Therefore 
Tr «(IV) is bounded. 

It remains to be shown that Tr«(lV) is bounded in 
the presence of attractive Coulomb singularities. We 
give a nonrigorous demonstration. Suppose it were 
unbounded for the case of the interaction of two op­
positely charged particles. Then for the magnitude of 
Tr «(IV) to be very large, part of 

(36) 

must be concentrated in a very small volume n, say a 
sphere of radius R. For approximately uniform dis­
tribution in the sphere 

If the charges are eZl and -eZ2, with positive Zl and 
Z2, then 

I (V)I:::; (3e2/47rR3)ZlZ2! d3r/r 
11 

=3e2Z 1Z2/(2R) 

=e(R-l) (small R). (38) 

By the uncertainty relation the relative momentum is 

(I pi )=M(R.-l) (39) 

and the kinetic energy of relative motion is 

(40) 

Therefore if the magnitude of the potential energy 
becomes very large, and the potential energy negative, 
the kinetic energy of relative motion becomes even 
larger and positive. For (V) to be unbounded (H)= (Ho') 
+(V) would have to be unbounded, and this contradicts 
our initial assumptions. Any redistribution of per) 
within n merely increases the kinetic energy even more 
than it decreases the potential energy. The argument is 
unaffected if the number of particles becomes large, so 
long as it remains finite. Thus (V) is bounded. 

Therefore S(t) is an almost periodic function of time 
when the particles interact through potentials which 
have repulsive singularities no stronger than r-2 and 
attractive singularities no stronger than r-1, and the 
H theorem is then false. 

VII. DISCUSSION 

Isolated finite quantal ensembles are essentially 
almost periodic, and not irreversible; this almost perio..: 
dicity is not removed by coarse-graining. There is a 
reccurence for ensembles of quantal systems similar to 
Poincare's recurrence for individual classical systems. 
For example, an ensemble of quantal systems each con­
sisting of N identical particles all of which are in one 
half of an infinitely heavy perfectly reflecting cylinder 
at time zero, will be found after some long interval of 
time T in a condition in which all the particles are in 
the same half of the cylinder for nearly every member 
of the ensemble, and this same time T will be sufficient 
however many systems there may be in the ensemble. 
For systems of macroscopic size this time will be very 
long indeed, and much longer than the time of an 
ordinary experiment. However, we have shown that 
ensembles of finite isolated quantal systems can tend 
to equilibrium only over a finite length of time, and no 
theory of their irreversibility can be entirely satisfactory 
if it does not take this into account. 

For sufficiently small systems it might be possible to 
detect the periods experimentally. They are essentially 
quantal periods. 

The disproof of the H theorem breaks down for 
systems with continuous spectra in general, and for 
classical systems in particular, unless the latter are 
linear and finite. There are some classical ensembles 
at least which approach equilibrium and then stay 
there. For instance consider an ensemble in which each 
member system is a single anharmonic oscillator. At 
time t=O let the system have a Bolzmann energy dis­
tribution, but a nonequilibrium distribution in the 
two-dimensional phase space. For instance in the case 
of simple pendulums with finite amplitude they could 
all be vertical at time t=O with a Gaussian velocity 
distribution. The representative point in phase space 
of each system then cycles around a suitably chosen 
origin with a period depending on its energy. This is 
mathematically equivalent to Gibbs' model of a cylinder 
of liquid. lO The coarse-grained entropy increases to its 
equilibrium value, and stays there. For the quantal 
analog of the foregoing classical ensemble, the entropy 
is almost periodic, whatever the initial distribution. 
Thus there is a basic difference between the classical 
and quantal statistical mechanics of isolated finite 
systems. 

Although we are unable to come to any general con­
clusions regarding the classical H theorem, it can be 
stated that any "proof" of the theorem which can be 
generalized to quantal statistics is necessarily invalid 
for finite systems and arbitrarily long times. 
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It is shown that a class of Schwartz distributions on the real axis can be continued to holomorphic functions 
in the upper and lower complex half-planes such that the "jump" on the real axis represents the distribution. 
Many operations with distributions can be reduced to operations with the associated holomorphic functions 
which is of particular interest for the convolution product and for Fourier transforms. By means of the 
continuations several kinds of multiplications for distributions are being defined, which is of interest for 
quantum field theory. 

I. INTRODUCTION 

T HE theory of distributions of Schwartzi generalizes 
the notion of (ordinary) "function" such as to 

include measures and other "generalized functions." 
The notion of "distribution" comprises various quanti­
ties occurring in physics that are not functions in the 
ordinary sense; for example, Dirac's 0 function, causal 
functions, and the vacuum expectation values in 
quantum field theory. Schwartz's theory serves well 
for the problems of physics except in the case where 
products of these quantities occur (for instance products 
of causal functions) for which it does not account. 
(Compare Akhiezer and Berestesky2 and Bogoliubov 
and Shirkov.3) 

Schwartz defines a distribution space as the dual of 
a linear space of "test functions," such as the space 
(~) of all (Coo) functions or the space (:0) of all (Coo) 
functions with compact support. 

Another approach (compare Lighthill4 and the 
bibliography there) is to define distributions as the 
limit quantities of sequences of functions [0 (x), for 
instance, is represented by the approximating functions 
(n/n)! exp( -nx2)]. 

In this paper we suggest a third approach: We 
associate with a distribution on the real axis a pair of 
holomorphic functions in the complex plane, one 
function holomorphic in the (open) upper half-plane, 
the other holomorphic in the lower half-plane. The 
limit of the sum 0.£ these two functions at x+ie and 
x-ie, e ~ 0, x on the real axis, represents the distribu­
tion. Every distribution with compact support (and 
certain others) can be represented in this way. (We 
denote the associated holomorphic functions as "ana­
lytic continuation" of the distribution.) 

* The work was finished at the University of California, 
Berkeley with support of the Office of Naval Research. 

1 L. Schwartz, Theorie des distributions, Vol. 1 and 2. Actualites 
sci. et indo No. 1091 (1950) and 1122 (1951). 

2 A. I. Akhiezer and V. B. Berestetsky, Kvantovaya Elektro­
dinamika (Moscow, 1953) (English translation: U. S. Atomic 
Energy Commission). 

3 N. N. Bogoliubov and D. V. Shirkov, Introduction to the 
Theory of Quantized Fields (Interscience Publishers, Inc., New 
York, 1959). 

4 M. J. Lighthill, Introduction to Fourier Analysis and Generalized 
Functions (Cambridge University Press, New York, 1958). 

This technique has an advantage: operations with 
distributions can in many cases be replaced by opera­
tions with concrete analytic functions. For example, 
a distribution T (defined on the real axis) applied to a 
test function c/> can be written only symbolically in the 
form of an integral 

+00 
T·c/>= i T(x)c/> (x)dx, 

-00 

where T(x) has no independent meaning. By using the 
analytic continuation [denoted by Tl(Z)] one can 
replace the symbolic integral f-oo+ooT(x)c/>(x)dx by the 
ordinary contour integral fCpTl(Z)c/>(z)dz [for holo­
morphic test functions c/>(z), Cp consisting of a line 
above and a line below the real axis]. 

The analytic continuations of several distributions 
of interest in physics such as Dirac's 0 function and 
its derivatives, the 0+ function, and pel/x) (principal 
part of l/x), are given as examples and various com­
monly used identities connecting these distributions 
are easily established rigorously. The idea to continue 
functions and distributions to analytic functions is an 
old one. A beautiful exposition (for functions only) is 
given in Carleman.6 Schwartz6 continues Laplace 
transforms of distributions. Similarly the n-fold vacuum 
expectation values studied by Wightman7•8 (Wightman 
functions) are Fourier transforms of quantities vanish­
ing outside the light cone which implies that the 
Fourier transform converges not only on real space-time 
but in the "forward tube" as well. It defines a particular 
type of analytic continuation of a distribution. Similar 
techniques are used in dispersion relations (compare 
Bogoliubov, Medvedev, and Polivanov9 and Bremer­
mann, Oehme, and Taylor.lO 

6 T. Carleman, L'integrale de Fourier et questions qui s'y rat­
tachent (Almqvist & Wiksells Boktryckeri-A.-B., Uppsala, 1944), 
Chap. II. 

6 L. Schwartz, Medd. Lunds Univ. Mat. Sem. Supp!. M. Riesz 
196 (1952). 

7 A. S. Wightman, Phys. Rev. 101, 860 (1956). 
8 A. S. Wightman and D. Hall, Kg!. Danske Videnskab. Selskab 

Mat.-fys. Medd. 31, No.5 (1957). 
9 N. N. Bogoliubov, B. V. Medvedev, and M. K. Polivanov, 

Problems in the Theory of Dispersion Relations (Fizmatgiz, Moscow, 
1958). 

10 H. J. Bremermann, R. Oehme, and J. G. Taylor, Phys. Rev. 
109,2178 (1958). 
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Also, Kothell observed in 1952 that, given a finite 
closed curve C in the complex plane and a distribution 
on the curve, a pair of holomorphic functions can be 
associated with the distribution, one function holo­
morphic in the interior of the domain bounded by the 
curve, one holomorphic in the exterior. Tillmannl2 
generalized this theory to unbounded domains (such as 
the half plane). Similar results have also been obtained 
by Sato.13 

Having applications to physics in mind, we limit 
ourselves to distributions on the real axis and use 
straightforward methods rather than the elegant 
language and techniques of Banach spaces extensively 
employed by Kothe, Tillmann, and Sato. 

The product of two arbitrary distributions is in 
general undefined in the theory of Schwartz, the 
symbolic integral f __ +«OS(x)T(x)¢(x)dx having a well­
defined meaning only if in the neighborhood of each 
singularity of Sex), T(x) is "smooth" of at least the 
order of the singularity of Sex). By using the analytic 
continuation of a distribution, various ways to define a 
multiplication for arbitrary distributions suggest them­
selves. These possibilities appear to have applications 
relative to the divergence difficulties in quantum field 
theory arising from multiplication of singular distribu­
tions (compare Bogoliubov and ShirkoVl and Bogoliu­
bov and Parasiuk14). These applications are to be 
discussed in a forthcoming paper by Bremermann,16 
together with applications of results on Fourier trans­
forms obtained here. 

Following Carleman,6 we define the Fourier transform 
as follows: We split the integration into fa"" and 
.1-00°. The first integral gives a function holomorphic 
in the upper half-plane, the second a function holo­
morphic in the lower half-plane. An important result is: 
If f is a square integrable function, then this pair of 
holomorphic functions coincides with the analytic 
continuation of the ordinary Fourier transform of f 
(and this result can be extended to include tempered 
distributions). Various results are established and the 
Fourier transforms of such functions as o+(x), p(:rn), 
e(x) are computed as examples. Carleman's work, 
which was done before Schwartz's theory was developed, 
is limited to D and Lp functions. The methods become 
more powerful when applied to distributions. Our 
results of Sec. IX are closely related to Schwartz. 6 

This paper is limited to the case of distributions on 
the real axis. An extension to higher dimensions 
(involving functions of several complex variables) is 
possible, but some new difficulties arise. The authors 
believe that the method of analytic continuation holds 
great potential for applications, some of which (to 

11 G. Kothe, Math. Z. 57, 13 (1952). 
12 H. G. Tillmann, Math. Z. 59, 61 (1953). 
13 M. Sato, Proc. Japan Acad. 35, 126 (1958). 
14 N. N. Bogoliubov and O. S. Parasiuk, Acta Math. 97, 227 

(1957). 
15 H. J. Bremermann, ONR Rept. No.8 (1959). 

differential equations and in particular to electric 
networks) will be discussed in a future paper. 

II. SCHWARTZ DISTRIBUTIONS 

In the following we summarize some of the basic 
definitions of Schwartz's "Theorie des distributions".l 

Distributions are defined as linear functionals operat­
ing on a space of "test functions." Different spaces of 
test functions give rise to different distribution spaces. 

In any case the test functions are complex valued 
functions ¢ (x) = cP (Xl,' .. x n ) of n real variables that 
are m times continuously differentiable ["of class 
(Cm)"], with 1::; n < 00 and 0::; m::; 00. In most cases 
the test functions are taken to be indefinitely dif­
ferentiable [(Coo) functions]' 

The variables Xl, ... Xn range over the n-dimensional 
Euclidean space Rn. The test functions ¢(x) are defined 
on all of Rn. The complement of the largest open set 
where ¢(x) is zero is called the "support of ¢(x)." 

Schwartz considers also the case in which the ¢(x) 
are functions on a differentiable manifold. In this 
paper we will limit ourselves to the Rn. 

Space of Test Functions (5) 

(5) is the vector space of all (Coo) functions on Rn 
that have compact support. Convergence is defined as 
follows: A sequence {¢j} is said to converge to zero if 
all the ¢j have their support contained in a fixed 
compact subset of Rn and if the ¢j as well as all their 
derivatives converge uniformly to zero. (Uniform 
convergence is required for each fixed order of the 
derivatives, not for all orders collectively.) 

Space of Distributions (5)') 

A functional Ton (5) is an operation that associates 
with every ¢E (5) a complex number. We denote this 
associated number by T·¢. 

A functional T on (5) is linear if: 
(a) T· (¢1+¢2)= T'¢l+ T'¢2 for every CPI, ¢2E (5); 
(b) T· (k¢)=kT·¢ for every ¢E(5) and every 

complex number k. 
A functional T is continuous if T'¢j converges to 

zero for any sequence {cpj} of functions ¢jE (5) that 
converges to zero in (5) (as defined earlier). 

A distribution, as defined by Schwartz, is a continuous 
linear functional on (5). The space of all distributions is 
denoted by (5)') and is the dual space of (5). 

Support of a Distribution 

A distribution T is said to be zero in an open set 0 
of Rn if T·¢=O for all test functions cpE (5) whose 
support is contained in O. 

The support of a distribution is the complement of 
the largest open set in which T is zero. 
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Space of Distributions (8') 

Let (8) be the vector space of all (Coo) functions on 
Rn with arbitrary support. Convergence in (8) is 
defined differently from convergence in (1)), as follows: 
A sequence {cpj}, cpjE(8), converges to zero if the cpj 
converge to zero uniformly in every compact subset of 
Rn, and the same is true for the derivatives of any 
order. (Again uniform convergence is required only 
for fixed order of the derivatives, not for all orders 
collectively.) 

This notion of convergence is weaker than the 
convergence defined for (1)) and it generates a true 
topology as follows: Let CPo be a fixed function in (8). 
Then we define as neighborhoods the sets {cpiicp(p)(x) 
-cpo(p)(X)\<E for xEK, p:::;m}, where E>O and K 
is a compact set and m an integer>O (cp(p) denotes the 
pth derivative). It is easy to see that this definition 
generates a topology, and a sequence is convergent in 
this topology if, and only if, it is convergent as just 
defined. 

The dual space of (8), that is, the space of continuous 
linear functionals on (8) is denoted by (8'). Schwartz 
has shown: (8') consists exactly of those distributions in 
(1)') that have compact support. 

Generalized Function Notion 

It is sometimes convenient to write a distribution as 
an integral over a "generalized function" : 

T·cp= J'" T(x)cp(x)dx, 
-<>0 

where the integral and the "symbolic kernel," or 
"generalized function" T(x) are defined by this equa­
tion. The Dirac 0 function and the causal functions in 
quantum field theory are usually written in this form. 
On the other hand, if T(x) is given as a summable 
function, then the integral f-oo +-OT(x)cp(x)dx defines 
a distribution, which, again, we denote by T·cp. 

Principal Part of rn 

The function X-I is not integrable at the origin and 
therefore does not define a distribution in (1)'). How­
ever, it is possible to define a "principal part of x-l," 
denoted by P(:rl) as follows: 

f +oo1 +'" (1 1 
P -cjJ(x)dx= lim tf cp(x) --. +--. )dX 

-U) x .....0 -00 X+~E X-ZE 

for all cp(x)E(1». 
To show that this defines a distribution in (1)') let 

us first observe that due to the fact that any cpE (1)) 
has compact support, we can limit the integration 
from - 00 to + 00 to integration over any finite interval 
{a,b} that contains the support of cpo Let us choose 
a,b~O. 

Since cp is a Coo function we can develop it into a 
finite Taylor series 

cp(x) =cp (O)+cp' (O)x+ [cp" (t1x)/2 !]x2, 0 <t1< 1. 

We see that 
[cp(x)-cp(O)]/x 

is a continuous (even Co<!) function. Hence 

b (1 1 l~ t f [cp(x)-cp(O)] -. +-. )dX 
a X+1E X-~E 

= fb cp(x) -cp(O) dx 

a X 

exists as an ordinary integral. Thus only 

f
bq,(O) 

P -dx 
a X 

remains to be determined. We obtain 

b( 1 1) 
lim cp(O)tf -. +-. dx 
.....0 a X+~E X-~E 

cp(O) 
= lim -[log(b+iE)+log(b-iE) 

.....0 2 
-log(a+iE)-log(a-iE)] 

cp(O) b2 
=-log-. 

2 a2 

Hence P fab(l/x)cp(x)dx is well defined for every 
cpE (1)), and the integral depends linearly and con­
tinuously upon cp, thus pel/x) defines a distribution in 
(1)'). 

The integral P f-oo +-O(l/x)cp(x)dx converges even if 
cp(x) vanishes only linearly at infinity (rather than 
having compact support). This can be seen by splitting 
cp(x) = CPl (X)+CP2 (x), where CPl and CP2 are both (Coo) 
functions, CPl with compact support and CP2 vanishing 
in a neighborhood of the origin. In particular we get 

1 f+oo 1 1 j 1/2z for Imz>O, 
-P ---dx= 
2m -00 x x-z - (1/2z) for Imz<O. 

This follows from the fact that for E> 0 

~ J+oo _1_~1~dx= {1/(Z+iE) for Imz>O, 

211"i -00 X+iE x-z 0 for Imz<O; 

and 

~ J+-O _1_ ~x= J 0 
2m -<>0 x-iE x-z 1-[1/(z-iE)] for Imz<O, 

for Imz> 0, 

(Cauchy's integral formula). 
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Completely analogously a principal part can be 
defined for ,x-n, n an integer and n>O by 

f
-t«> 1 

P -«> -;:t'(x)dx 

= lim tf+OO[ 1 + 1 ]cf>(X)dX. 
.-.0 -00 (x+iE)n (x-iE)n 

In particular, we get 

_1_pf+OO ~ ~x= {1/(2Zn) for Imz>O, 

2ri -00 xnx_z -[1/(2zn)] for Imz<O. 

III. ANALYTIC CONTINUATION OF DISTRIBUTIONS 

The Cauchy integral has the "reproducing property" 

1 i 1 {f(Z) for zED, 
- f(s)-d~= 
2ri iJD s-z 0 for zEED, 

D a domain in the complex z plane, fez) holomorphic in 
D, continuous in D. If under the integral we substitute 
for the holomorphic function f an arbitrary function 
g, then 

F(z)= (2'lri)-11 g(s)_1_ds 
iJD s-z 

is still a holomorphic function in D, but in general 
F(z)~g, that is, the integral no longer reproduces g. 
In the following we will study the relationship between 
F(z) and g, not only if g is an arbitrary function, but 
if g is a distribution. As aD we will take the real axis, 
hence D is the upper or lower half-plane. 

Theorem 1. Let T be a distribution with compact 
support. Then 

TO(z)::; (1/2ri)T· (X-Z)-l 

exists and is a holomorphic function of z in the whole z 
plane minus the support of T. For z ---t 00, T(z) tends 
to zero. 

We will call to(z) the "Cauchy intgral of T." 
Proof. (This result can also be derived from Schwartz,l 

Vol. 2, theorem 11.) For Imz~O the function (X-Z)-l 
is a (Coo) function with respect to x, and is thus a 
function in (&). Hence, T· (X-Z)-l exists for any z 
with Imz~O. 

To show that it exists also for z in the complement of 
the support of T we make use of a remark by Schwartz 
(Vol. I, Chap. III, Sec. 7): 

Let a(x) be a (Coo) function such that a(x) = 1 for 
x in the support of T. Then 

T·(acf»=T·cf> 

for every cf>E (&). 
Let N be a neighborhood of the support of T, C(N) 

the complement of N on the x axis. Let a(x) be a (Coo) 

function such that 

a(x)=O for xEC(N) 

a(x)= 1 for x in support of T. 

[Such a(x) obviously exist.] Then 

a (x) (X-Z)-l 

is a (COO) function for every zEEN. Hence 

T· (x-z)-l=T·[a(x)· (X-Z)-l] 

exists for every zEEN. 

a 

Secondly, we have to show that to(z) is holomorphic. 
We have 

-to(z)= lim h-1[to(z+h)- TO (z)] 
az h->O 

1 1 r 1 = lim -·-T·a(x) ---
10->0 2ri h x-z-h x~J 

1 a(x) 
= lim-T·-----­

h->O 2ri (x-z-h) (x-z) 

If zEEN, then the function 

cf>h= a (x)/ (x-z-h) (x-z) 

converges for h ---t 0 uniformly on the whole x axis to 
a(x) (X-Z)-2. Sifnilarly, (d/dx)cf>h converges uniformly 
to (d/dx)a(x)(x-z)-2, and the higher derivatives 
converge correspondingly. 

Therefore, T·cf>" converges to T·a(x)(x-z)-2= T 
. (X_Z)-2. This shows that the complex derivative of 
TO(z) exists for every zEEN, hence that to(z) is liolo­
morphic in the whole z plane minus the real axis. But 
since N was an arbitrary neighborhood of the support 
of T, to(z) exists and is holomorphic in the whole z 
plane minus the support of T. 

For z ---t 00 the function a (x) (x- Z )-1 tends to zero 
uniformly, together with all its derivatives. Con­
sequently, because of continuity, to(z) tends to zero 
for z ---t 00. This completes the proof. 

Corollary. If TE (&f), then to(z) vanishes at least as 
A I z 1-1 for I z I ---t 00. 

Indeed, TO(z) is holomorphic outside a sufficiently 
large circle, hence has a Laurent development: 

But from theorem 1, limit as z---too T(z)=O. This implies 
that ao=O, and the corollary follows immediately. 

Theorem 2. The nth derivative of the Cauchy integral 
of a distribution TE (&f) is equal to the Cauchy integral 
of the nth derivative of T: 

an nt 
-to(z) = TO(n) (z) = -T· (x- z)-n-1. 
azn 2'lri 
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Here T(n) denotes the nth derivative of T in the 
sense of Schwartz, and 'fO(n) (z) = (l/2m)T(n). (x- Z)-l. 

In the proof of theorem 1 we have already shown that 

a 1 
-'fO(z)=-T· (X-Z)-2. 
az 2m 

Similarly, one obtains for the nth derivative 

an nI 
-'fO(z)=-T· (x-z)-n-l. 
azn 27ri 

On the other hand, the derivative of T in Schwartz's 
theory is defined by 

T' .cp= - T .cp'. 
Thus 

T'· (X-Z)-l= -T· (d/dx) (X-Z)-l= T· (X-Z)-2, 

and by iteration we obtain 

T(n). (x-z)-l=n IT· (x-z)-n-l. 

This proves our theorem. 

Relation between T and TO(z) 

If T(x) is the restriction of a function f holomorphic 
in the upper half-plane which behaves like 1 z 1-<> for 
z -? 00 for some u>O, then 'fO(z) = fez) in the upper 
half-plane and 'fO(z)=O in the lower half-plane. [In 
theorem 1 we had assumed that T has compact support. 
This is, of course, a sufficient but not necessary condi­
tion that 'fO(z) exist. We will discuss the general case 
of noncompact support later.] If fez) is holomorphic 
in the lower half-plane, we find similarly that 'fO(z)=O 
for Imz>O and 'fO(z) = - fez) for Imz<O. Thus, if 
T(x) is a function analytic in either half-plane, then 
the "jump" of T(z) on the real axis is equal to T(x). 
We will show that this latter property holds not only 
when T(x) is analytic, but that it holds for general 
distributions. 

Theorem 3. If T(x) is a (en) function with compact 
support, then for E: -? 0+ ['fO(X+iE)- 'fO(X-iE)] con­
verges uniformly to T(x) on the whole real axis, and the 
same is true for the derivatives up to nth order. If T is a 
distribution in (8'), then [TO(x+iE)- 'fO(X-iE)] con­
verges for E>O, E -? 0 to T in the following sense: 

for every test function cpE (5). 
Proof. Let us first consider the case in which T(x) is 

a continuous function. To demonstrate the uniform 
convergence, we need an estimate of the quantity 
1 TO(x+if)- 'fO(X-if)- T(x) I for f -? o. We have by 

definition 

'fO(X+iE)- 'fO(X-iE) 

=_1 f+"'Tw[-l-
27ri -00 ~-X-iE 

_1_]d~. 
~-x+ie 

We split the range of integration as follows: 

'fO(X+iE)- TO(x-ie) 

=_1 {fx-.5+f x+O +f"'}TW 2ie d~, 
27ri -<>J ,,-6 x+6 I ~- x+ie 12 

where a is an arbitrary positive constant. Since T(x) is 
continuous and has compact support [TE (8')], it is 
bounded, 1 T(x) 1 <M for all x. Let L be the length of 
the support of T. Then the integrals over the intervals 
{ - 00 , x-o}, {x+o, + oo} are together smaller in 
absolute value than (2MLe)/o2. 

In order to discuss the integral over the interval 
{x-a, x+o}, we split T(~) into real and imaginary 
parts, T(~)=ReTW+i ImT(~). Then 

f
x+O 2ie 

ReT(~) d~ 
,,-3 I ~-x+iE:12 . 

f x+O 2~E: 
=ReT(~o) d~ 

,,--3 1~-x+ieI2 

for some ~oE{x-o, x+a}. We can now write 

i~L-~-ie ~_~+iJd~= ~ z~xdZ' 
where r is the contour consisting of the directed line 
from x-a-ie to x+a-iE: and the line from x+o+ie to 
x-a+ie. In order to make r a closed curve r*, we add 
the integrals fromx-o+ie tox-a-ieandfrom x+o-ie 
to x+o+ie. These two integrals are together in absolute 
value less than 4e/o. Now fr*[z-x]-ldz= 2m. There­
fore, 

ReT(x)-- ReTW d~ 
I 

1 fx+O 2ie I 
27ri ",--3 1 ~-x-ieI2 

2M e 
< I Re[T(x)- T(~o)]1 +--, 

?r 0 

and analogously we obtain the same estimate for 
ImT(x). 

~o lies in the interval {x-a, x+a}. Let mea) be the 
largest variation of T(x) in any interval of length 2a. 
Since T(x) is continuous and of compact support, 
mea) -? 0 as a -? o. Thus I Re[T(x)- T(~o)] 1 <mea), 
and we obtain as a total estimate 

2M·De 4M e 
< +2m(o)+--. 

7r02 11" 0 
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If we choose 0= El, then the right-hand side tends to 
zero for E ~ O. The estimate is independent of x. Hence 
TO(x+iE)- to(X-iE) converges to T(x) uniformly for 
all x, as asserted previously. 

If now T(x) is a (Cn) function, then we can apply the 
result just proved to the derivatives T(r) for r::; n. 
On the other hand, we have by theorem 2 

ar 1 f+OO 1 
-[to(z)]=- T(r) (x)--dx. 
azr 27ri -00 x-z 

Consequently, 

and the convergence is uniform on the whole real axis. 
This proves our theorem for the case where T(x) is a 
(Cn) function. 

Proof of the general case. If T is an arbitrary distribu­
tion of compact support, then the limit in the ordinary 
sense in general does not exist. Instead we have to show 
that 

+00 

~ J [to(X+iE)-to(x-iE)}t>(x)dx=T'q, 
00 

for every test function q,E(Xl). Since to(z) is holo­
morphic for Imz;eO, and q, has compact support, this 
integral exists. Let 

I(E) = i-too [to (X+iE) - To (X-iE)}t>(x)dx 
-00 

=- r q,(x)T~. 1 -too [1 
27ri)-oo ~-X-iE 

__ 1_]dX 
~-X+iE 

1 f+oo (2iE) 
=- q,(x)T~· dx 

27ri _00 1 ~-X+iE 12 

We would like now to exchange the integration and 
the application of T. Because T is linear we can write 

The bracket to which T is applied is a test function in 
(&) which converges uniformly to ;O(~+iE)-;O(~-iE), 
where ;O(z) is the Cauchy integral of q,(x). The deriva­
tives with respect to ~ likewise converge uniformly. 
Therefore, from the definition of continuity in (&), 
we obtain 

q,(x) is a (Coo) function; consequently [;O(~+iE) 

- ;O(~-iE)] converges uniformly to cfJW, together 
with all derivatives, as we have proved. This permits 
us to exchange once more the application of T and the 
limit: 

Thus I(E) converges to T·q, for every q,E (Xl). This 
proves our theorem. 

Examples. 
1. Dirac's 0 function is defined by 

+00 f o (x)q, (x)dx= q,(O) for all q,E (8). 
-co 

The Cauchy integral of o(x) gives 

1 f+oo 1 1 
bO(Z)=- o (x)--dx= --. 

27ri -co x-z 27riz 

2. Derivatives of the 0 function: bO(n)(Z) = (dnjdz n ) 

XbO(Z) [theorem 2]. Thus, 

(-1)n+ln! 1 

3. Finite step function: 

E>a.b(X) = 1 for a<x<b; 

E>a,b(X)=O for x<a and b<x. 

1 fb 1 1 b-z 
eO",b(Z)=- --dx=-log--. 

27ri a x- z 27ri a- z 

eOa,b(Z) is analytic in the cut Z plane, with the cut 
connecting a to b. eOa,b(Z) can be continued holomorphic­
ally across the cut from a to b, except at the end points. 
This continuation leads, of course, to a multiple valued 
function. However, we must choose that branch of 
log[(b-z)j(a-z)] that approaches zero at infinity 
[theorem 1]. 

4. Let T be a distribution whose support consists 
of an isolated point a. Then, according to SchwartzI 
T is a finite linear combination of Dirac's 0 functions 
and its derivatives: 

N 

T(x)= L a..o(..-I)(x-a). 
)1=1 

The Cauchy integral is consequently given by 

N (-1)'(1'-1)! N 

TO(z)= L a. (z-a)-'= L a.*(z-a)-·, 
.=1 27ri .=1 

if we denote a.(-l)v(v-l) !(27ri)-1 by a.*. Thus to(z) 
is a finite polynomial in l/(z-a). 
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5. To every distribution T with compact support 
there corresponds a function holomorphic in the whole 
z plane minus the support of T, and tending to zero 
at infinity. 

It is natural to ask whether the converse is true: 
Given a function fez), holomorphic in the z plane minus 
a compact set 0' on the real axis and satisfying fez) ~ 0 
for z ~ 00, does there exist a distribution with support 
0' such that TO(z) = fez)? 

The answer is negative. The function el/ z-1 is a 
counter example: el/z-l tends to zero for z~ 00, and 
is holomorphic except for the origin. If there would 
exist a distribution T such that To(z) = e1/ z-l, then T 
would have to have as support the origin, that is an 
isolated point. Hence, according to the preceding 
example, 

N 

TO(z)= L a.*z-·, .-1 
where N is finite. On the other hand, we have 

00 I 
el/z-l= L -Z-', 

.=1" ! 

minus L, we may deform the curve without changing 
the integral. 

This idea can be made rigorous as follows. Let L' 
be a neighborhood of L. We take E' to consist of 
finitely many intervals. We then can treat each one 
separately. We thus will assume in the following that 
E' is an interval: E'={a,b}. 

b b f T(x)dx= .~ f [To(x+ie)- To (x-ie)]dx. 
" G 

Thus for e>O sufficiently small, 

I 
b b I ~ f. T(x)dx- .[ [TO(x+ie)- To(x-ie)]dx <2 

for any ~>O. However, we can write the integral 
fab['fO(x+ie)- 'fO(x-ie)]dx as fC(.)'fO(z)dz, where 
C(.) consists of the lines from a+ie to b+ie and b-iE 
to a-ie. To obtain a closed contour, we add the integral 
over T(z) from a-ie to a+ie and b+ie to b-ie. 
Since 'fO(z) is holomorphic, hence bounded along these 
paths, this addition will be smaller than ~/2, if e is only 
made small enough. Thus with C(.)* the completed 

where the sum goes to infinity. Hence there does not contour, 
exist a distribution T such that To(z)=el/ z-1. 

[It can be shown, making use of Schwartz6 that in 
general 'fO(z) cannot have worse than "polar behavior" 
on the real axis.] 

IV. "TOTAL VALUE" OF A DISTRIBUTION AS A 
GENERALIZED RESIDUE OF 7'O(z) 

T·I, that is a distribution applied to the test function 
</I (x) == 1, is called the "total value" or "integral" of 
T (Schwartz,! p. 88). 

As a first demonstration of the usefulness of To(z) 
we have: 

Theorem 4. Let T be a distribution with compact 
support. Then 

+00 

T·I= f T(x)dx= f 'fO(z)dz, 
00 co 

where Co is any simple closed curve circling the support 
of T clockwise. 

If T has compact support E, then we can restrict the 
integration from - 00 to + 00 to an integration over L. 
Intuitively theorem 4 means the following: 

If we replace T(x) by 'fO(z) , then by theorem 3 
f1',T(x)dx is replaced by two integrals: One integral 
over the "upper value" {limit as e ~ 0+ 'fO(x+ie)} 
integrated over E in positive direction plus the integral 
over the "lower value" (limit as e~O+ To(x-ie)} 
integrated along E in the negative direction. 

The integration appears thus as an integration over a 
curve shrunk to an upper and lower layer along L. 
But since 'fO(z) is holomorphic in the whole z plane 

for sufficiently small e. But since 'fO(z) is holomorphic 
in the {z plane} - L, we have at once 

for any given curve Co in ({z plane} - E) that is 
homologous to C(.)*, that is for any simple closed curve 
circling E clockwise. 

Therefore, 

I f b T(x)dx- i T(z)dz I <~ 
a Cc.)· 

does not depend upon e. It is smaller than any ~>O. 
Hence the two integrals are equal. 

Theorem 4 is obviously a generalized residue theorem. 
Examples. 
1. T(x)=~(x)+o'(x). Then 

I 1 
'fO(z) = --+-. 

27riz 2niz2 

The support consists of the origin. Hence 

T'l=-~ f (~-~)dz=Res(~-~)=1. 
2n Co z Z2 Z Z2 
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2. Let T have support at a finite number of isolated 
points al, •• ·am• Then (compare example 4 of Sec. 3) 

Then 

1 m N 

fO(z) = -- L: L: a".(z-a .. )-·. 2m ,,-I .=1 

m 

T·1=sum of residues of fO(z) = L: a"I. 
,,=1 

v. DISTRIBUTIONS WITH NONCOMPACT SUPPORT 

The function (X-Z)-I (for Imz~O) belongs to (0) 
but not to (::0), and consequently T· (X-Z)-I is not 
defined for all TE(::O'). On the other hand, T· (X-Z)-I 
does exist for certain TE (::0') that are not in (0'), and 
that inclu~es important cases such as. 

T(x) = (X+i~)-I; T(x)=P(rn ), n>O. 

Since neither (::0') nor (0') nor any of the other 
distribution spaces defined by Schwartz suits the 
problem of studying fO(z), we will introduce in the 
following a new space: 

Definition 1. Let (V) be the subspace of all e/>E (0) 
which have the following properties: 

e/>(x)lxl ~Ko for Ixl--7 00, 

e/>(n)(x)lxl ~Kn for x --7 00, 

where K 0, K 1, K 2· .• are constants. Let convergence be 
defined as in (0). 

The corresponding distribution space, which we denote 
by ('0'), is the dual space of ('0). 

Remark. In the definition of ('0) we include the 
boundedness condition for the derivatives e/>(n) of e/> 
to insure that T(n) .e/>= (-1)nT·e/>(n) is defined. 

Lemma 1. Theorems 1, 2, and 3 remain true if 
TE(&') is replaced by TE('O'), and (in theorem 3) 
"uniform convergence on the whole reat axis" is replaced 
by "uniform convergence on every compact interval of the 
real axis." 

Theorem 1 asserts the existence and analyticity of 
fO(z) = (l/27ri)T· (X-Z)-I. Since (x-z)-IE ('0) for 
Imz~O, and since (X-Z)-I--7 0 uniformly for I zl --7 00 

and x in a compact subset of the real axis, TO(z) exists 
for all TE ('0'), and fO(z) --7 0 for I z I --7 00. The 
analyticity of fO(z) outside the [possibly unbounded] 
support of T follows exactly as for TE (0'). Theorem 2 
follows as before and from the observation that 
(x-z)-nE('O) for all n2::1, Imz~O. 

To extend theorem 3 we have to show that for 
continuous functions T(x)E ('0') 

[fO(x+ie) - fO(x-ie) - T(x)] 

converges uniformly to zero for x in any compact 
interval on the real axis. If this has been established, 
then it follows immediately that if T(x) is a (Cn) 
function in ('0'), then also the derivatives up to nth 
order converge uniformly. 

No change of the proof in the "general case": 
f.....,+«>[fO(x+ie)-fO(x-ie)JcI>(x)dx --7 T·e/> is neces­
sary since we assume that e/>E (::0). 

To show the uniform convergence of fO(x+ie) 
- fO(x-ie) for continuous T(x) we proceed as follows: 
Let aR(x) be a (Coo) function with the following 
property: 

aR(x)=1 for Ixl ~R 

O~aR(x)~ 1 for R< Ixl <2R 

aR(x)=O for Ixl2::R. 
Let 

TR(x)=aR(x)T(x), 

then TR(X) has compact support. 

Let 

Then 

We have 

T(x) - TR(x) = T(x)[1-aR(x)]. 

i3R(X) = 1-aR(x). 

t3R(X)=O for Ixl ~R 

O~t3R(X)~ 1 for R< Ixl <2R 

t3R(X) = 1 for Ixl2::R. 

Let D be any compact domain of the z plane (which 
mayor may not intersect the real x axis). Then for 
all sufficiently large R, i3R(X) (X-Z)-I is a (Coo) function 
in ('0') for all zED. For R --7 00 the functions i3R(X) 
X (X-Z)-I converge to zero, uniformly in x and z, for 
x in any compact interval of the real axis, and for zED. 
Hence 

converges to zero for R --7 00, uniformly for all zED. 
Now, since Tn has compact support, 

TRO(x+ie)-TRO(x-ie) --7 TR(x) 

uniformly on the whole real axis. Also, given any 
compact interval on the real axis, then TR(X)=T(x) 
in the interval for all sufficiently large R. By combining 
the two uniform convergences, we obtain that 

uniformly in every compact interval on the real axis, 
which was to be proved. 

Definition 2. Let TE ('0'). Then we say: "T(x) 
vanishes for I x I --7 00" if for every e>O there exists an R 
such that IT· e/> I < e for every e/>E (::0) which has the 
following properties: (1) e/>(x) 2::0 for all x; (2) the support 
of e/> is contained in {xllxl >R}, and (3) f.....,+«>e/>(x)dx 
=1. 

If T(x) is a function which vanishes for \x\--7 00, 

then we can find for every e> 0 an R such that for 
\x\>R, \T(x)\<e. Then, if e/> is a test function with 
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the three properties stated, 

II: T(X)4>(X)dxl<Ef~oo4>(X)dx=E; 
and conversely, if a function T(x) vanishes in the sense 
of definition 2, then it vanishes in the ordinary sense. 
Our definition of the meaning of the "vanishing of T(x) 
at infinity" is therefore an extension of the usual 
notion for functions. 

Corollary. If TE ('0'), then T(x) vanishes for ! x!---7oo. 
By theorem 3 we have for 4>E (:D) 

J+OO T(x)4>(x)dx 

-00 +00 

= ~ J [TO(x+io)- to(x-io)]4>(x)dx. 
-00 

From theorem 1 it follows that to(z) ---7 0 for z ---7 00. 

Hence we can find for every E>O an R such that 
! to(z) I <42 for Izl >R. It follows that 

+00 

! T'4>! ~ ei 4>(X)dX=E 
-.0 

for 4> with the properties previously described. Hence 
T(x) vanishes in the sense of our definition. 

While T(x) ---70 for I xl ---7 00 is a necessary condition 
that T(x) belongs to ('0'), it is not sufficient, as the 
following example shows: 

T(x) = 1/log(l+ Ix!) 

tends to zero for I x I ---7 00. However, 

i:R 

!X!IOg::+/XI) 

does not converge for R ---7 00, since 10g(1+ !xi)behaves 
as log I x I forlarge I x I, and f1/x logxdx= log logx. 

Sufficient condition. Let T(x) be a summable function 
such that there exists an a>O and a constant A such that 

/xlaIT(x)I<A for Ixl---7 00. 

Then T belongs to ('0'). The proof is immediate. Since 
T(x) behaves like Alxl-a for large lxi, T(x)4> (x) 
behaves like AKo I X 1-1-a for 4> (x)E ('0) [definition 1]. 
Thus f-oo +ooT(x)4>(x)dx converges, and TE ('0'). 

Examples. A number of distributions which are 
encountered frequently in the problems of physics and 
which are not contained in (&') are contained in ('0'). 
The following are examples. 

1. T(x) = p(x-n), n 2:: 1, n integer. Then 

1 f+oo 1 1 
J'O(z)=-P --dx 

2m -00 xn x- Z 

= 1/2zn for Imz> 0 

= -1/2zn for Imz<O 

(compare Sec. II, example 2). 

2. T(x)= l/(x+iE), E>O. 

T(x) is the restriction to the real axis of a function which 
is holomorphic for all z except for z= -iE. Thus, 

J'O(z) = 1/ (z+iE) for Imz>O, 
and 

TO(z)=O for Imz<O. 

3. o+(x) is defined as follows: 

From the preceding example, we see that 

o+O(z)= - (1/i1l") (l/z) for Imz>O, 

o+O(z)=O for Imz<O. 

4. In physics one makes use of the "symbolic 
identities" 

-i1rO+(x)= lim _1_=p(~)_i1l"O(X) 
<-+0+ X+iE X 

To prove these identities rigorously for the analytic 
continuations we only have to make use of the examples 
1-3. 

5. From examples 1-3 we also immediately obtain 
the identities 

and 
o+(x)+o+( -x)= 2o(x), 

o+(x)-o+( -x)= - (2/i1l")P(1/x). 

VI. ANALYTIC TEST FUNCTIONS 

In computing T·1, the "total value" of a distribution, 
we were able to replace the integral over the real axis 
by a contour Co circling the support of T. It would be 
convenient if we could do the same in general, that is, 
if we could write 

T .4>= I+
oo 

T(x)4> (x)dx= f TO(z);O(z)dz. (?) 
-00 Co 

This equality, however, does not hold in general. Indeed 

+00 

T·4>= lim J [J'O(X+iE)-J'O(x-iE)] 
.->0 

while 
-00 X[;O(X+iE)- ;O(X-iE)]dx, 

f TO(z);O(z)dz 
Co 

+00 

= f [J'O(X+iE);O(x+ie)- TO(x-ie);O(x-ie)]dx 
-00 

(independently of e). 
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The two integrals are obviously not equal in general. 
They are equal if ¢(x) is the restriction of an analytic 
function ¢(z) and if we replace ;o(z) by ¢(z). [Note 
that ;O(z)¢.¢(z), if ;O(z) is the Cauchy integral of the 
restriction of ¢(z) to the real axis.] 

This leads us to consider distributions defined with 
respect to the class of analytic test functions. 
,., Definition 3. We denote by (a) the set of all entire 
functions, by (<Xb) the set of all functions that are holo­
morphic in the strip {zll Imzl <b}, where 0< b 5: 00. 

We have (aoo ) = (a), and for all b: (a)c(ab)C(8). 
In the following sections, repeated use will be made of 

several contours in the complex plane; we therefore 
introduce the following notation. 

Definition 4. By Co we denote any simple closed curve 
that!circles the support of the given distribution clockwise: 

• 

By-C p we will denote two lines parallel to the real axis, 
both directed like the real axis, one above and one below: 

c , 
) 

"1\ oM, " In., If ..... " Ie If • 

By Co we will denote two lines, one in the upper half-plane 
and directed parallel to the real axis, and one in the lower 
half-plane, directed opposite (antiparallel) to the real 
axis: 

) 

J,UIU "' J II JJ IN' Htl ,tI, • fill tUc 

( 

Finally we will denote the strip {zllIm zl <b} by Sb. 
Theorem 5. Let TE(8'), ¢E(ab), O<b~ 00. Then 

T·¢= f+OO T(x)¢(x)dx= f 'fO(z)¢(z)dz, 

--00 ° 
for any COCSb. 

The proof is analogous to the proof of theorem 4, as 
is the proof of the following: 

Theorem Sa. Let TE('O'), ¢E(ab), O<b<oo, and 
I¢I ~Alzl-Iforz~ 00. Then 

T·¢= f 'fO(z)¢(z)dz 
Co 

for any CaCS b· 
We note that I¢I ~A Izl-I for z~ 00 cannot be 

satisfied by any ¢E ( a) = ( a",,). 
Example. Let T(x)=Il(n)(x), ¢(X)E(ab). Then TO(z) 

f
"" (-l)"+ln! 

o(n) (x)¢(x)dx . f z-"-l¢(z)dz 
00 2~ Co 

in agreement with the usual result. 
Convergence in (ab). We define convergence in (ab), 

O<b ~ 00, as follows: A sequence {¢i(Z)} of functions 
¢i(z)E (ab) converges to zero if it converges to zero 
uniformly in every compact subset in Sb. 

The dual space of (ab) we denote, as usual, by (ab'). 
It has also been studied by Ehrenpreis.16 

Since (ab)C (8) properly, the associated dual space 
(ab') is larger than (8'). A similar situation was 
encountered with respect to the set ('0) of linearly 
vanishing test functions, ('lJ) C ( 8), the dual space 
('0'):) (8') containing many distributions of practical 
interest. It is useful also in the present case to consider 
the subset of linearly vanishing functions in (ab). 
This subspace consists only of the constant 0 for b= 00, 

but it is nontrivial for O<b< 00. 

Definition 5. We denote by (<Xb V ) the subspace of 
(<Xb) consisting of all ¢E (ab) which vanish linearly for 
z~ 00: 

I¢(n)(z) I ~Knlzl-l forz~ 00, n=O, 1,2··· . 

Convergence is defined as in (ab). 
Obviously, (ab V'):) (ab') and (ab V'):) ('0'). The­

orems 1-3 and Sa hold for TE ( ab V') just as for 
TE ('0'). We note also that the condition 'fO(z) ~ 0 for 
I z I ~ 00 is again a necessary condition for TE (ab V'), 
O<b<oo, while 1'fO(z) I ~Alzl-a, Izi ~ 00, a>O is a 
sufficient condition. 

VII. MULTIPLICATION OF DISTRIBUTIONS 

To define a multiplication for distributions, it would 
seem natural to write for a product ST 

f
+OO 

ST·¢= S(x)T(x)¢(x)dx. 
--00 

However, this definition leads to difficulties. For 
example, T(x) = Ixl-1 is summable at the origin and 
defines a distribution in (1)'), but [T(X)]2 is not 
summable. Even worse is f-oo +000 (x)o (x)dx. Since 
f_ +ooo(x)¢(x)dx=¢(O), one might interprete f_.,,+ooo(x) 
Xo(x)dx=o(O), but 0(0) is undefined. If o(x) is approx­
imated by ordinary functions, then the sequence 
diverges. 

SchwartzI has observed that ST is well defined if 
locally S is "more regular" than T is "irregular." If T 
is a general distribution, then this condition means 
that S has to be a (Coo) function. In physical applica­
tions, on the other hand, ill-defined integrals over 

16 Leon Ehrenpreis, Ann. Math. 63, 129 (1956). 



                                                                                                                                    

250 H. J. BREMERMANN AND L. DURAND, III 

products of il-like causal functions occur, which lead 
to difficulties, notably in quantum field theory. 

Schwartz17 has shown that it is impossible to have a 
multiplication for distributions (not necessarily com­
mutative, but such that the product of two distributions 
is well defined) that contains x, P(x-1), and 1, and that is 
associative. Konig has shown18,19 that if one gives up 
some of these requirements, then there are many 
possible "multiplication theories." Bogoliubov and 
Parasiuk14 have defined a multiplication for "causal 
functions." It imitates the "subtraction procedures" 
used in practical calculations of Feynman diagrams in 
perturbation theory. The multiplication prescription is 
rather complicated and limited to the special class of 
"causal functions." 

In a further paper (Bremermann15) a mUltiplication 
is defined where the product of two distributions, in 
general, contains arbitrary constants (like constants of 
integration). It is based on Fourier transforms (and 
on the results of this paper). (For multiplication based 
on convolution compare also Ehrenpreis.20) 

In the following we want to demonstrate that the 
analytic continuations of distributions lend themselves 
readily to define various multiplications in a rather 
natural way. The products are well defined, they are 
distributions not on the spaces ( :D) or ($) of (Coo) func­
tions but operate on spaces of analytic test functions. 

1. Let S, T be two distributions with compact support. 
Then SO(z) and 'fO(z) exist and are holomorphic outside 
of the supports of Sand T. One candefin.e a multiplica­
tion as follows: 

(S(i)T) 'q,= f SO(z)'fO(z)q,(z)dz, 
Co 

where Co circles the union of the supports of S and T, 
and q,(z)E (ab). Since SO(z)'fO(z) is holomorphic 
outside the union of the supports of Sand T, and since 
q,{z) is holomorphic and· Co is bounded, the integral 
exists for. every 4>(z)E(ab). (We assume that Co lies 
in the strip {zl Im(z) <b}). The integral does not depend 
upon the curve Co, and S(i)T·q, depends linearly and 
continuously upon ¢(z), and hence is a distribution in 
(ab'). The multiplication is associative and com­
mutative. 

This can be extended to distributions with non­
compact support. If the product SO(z)'fO(z) vanishes 
like A Izl-, a>O and if ¢(Z)E(abV ), then S(i)T·¢ 
= fcaSO(z)'fO(z)¢(z)dz is defined (Ca consists of one 
line parallel to the real axis and one antiparallel). The 
condition ISO(z)'fO(z) I <A I z I-a for I z I ~ rYJ is trivially 
satisfied if one of the factors has compact support. If 
S has compact support, then S(z) vanishes at least 

11 L. Schwartz, Compt. rend. 239, 847 (1954). 
18 H. Konig, Math. Ann. 128,420 (1954). 
19 H. Konig, Abhandl. bayer. Akad. Wiss. Math. Naturw. Kl. 

No. 82 (1957). 
!O Leon Ehrenpreis, Am. J. Math. 76, 883 (1954); part II, 77, 

286 (1955); part III, 78, 685 (1956). . 

linearly at infinity while T(z) vanishes of unspecified 
order, hence S(z)T(z) vanishes at least linearly. 

This multiplication is no contradiction to Schwartz's 
"theorem of impossibility."17 Neither T(x) = 1, nor 
S(x)=x possesses a "Cauchy integral," and secondly, 
we have analytic test functions rather than (ceo) test 
functions. 

2. We observe that fl(z) equals fez) for Itn(z»O 
[if fez) is holomorphic in the upper half-plane], while 
fl(z) = - fez) for Im(z)<0 [if fez) is holomorphic in the 
lower half-plane]. Thus one could argue that one should 
multiply fez) with a factor ( -1) in the lower half-plane. 
Also, in the section on Fourier transforms, we will 
see that this new quantity, which we will call the 
"analytic continuation" has a special meaning for 
Fourier transforms. 

Definition 6. Let T be a distribution such that 'fO(z) 
exists. Let 

{ 
TO(z) for Im(z»O 

Tl(Z) = 
, - 'fO(z) for Im(z) <0. 

We call Tl (z) the" analytic continuation of the distribution 
T." 

We have 

T·q,=f 'fO(Z)4>(Z)dz=i Tl(Z)cp(z)dz 
Co Cp 

for analytic test functions ¢(z). Thus we can define a 
mUltiplication: 

S@T'¢=i SI (z) Tl (z)¢ (z)dz. 
Cp 

If at least one of the factors has compact support and 
if ¢(z) vanishes linearly for Izi ~. rYJ, then the existence 
of the integral is assured, and obviously it depends 
linearly and continuously upon ¢(z). Thus S@T·¢ is 
a distribution in (ab V'). The mUltiplication is associa­
tive and commutative. 

Lemma 2. Let S, T have compact support, then both 
S(i)T·1=O and S@T·1=O. 

Proof. We have SO(z)'fO(z)=SI(z)Tl(Z), SO(z) and 
'fO(z) are holomorphic outside their compact support 
and vanish at infinity. Therefore each one has a Laurent 
development that has no constant term. Therefore the 
product SO(z)'fO(z) vanishes at least quadratically at 
infinity. Hence 

i SO(z)'fO(z)dz= ResS(z)T(z) = O. 
Co 

For the integral 

1 Sl(z)Tl(Z)dz 
Cp 

we can, thanks to the quadratic behavior of Sl(z)Tl(Z) 
at infinity, dose the contour at infinity for the two 
lines of which Cp exists, and it follows that the integral 
is zero. 

The lemma shows that neither of the two multiplica-
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tions defined coincides with the ordinary multiplication 
in the case where Sex) and T(x) are, for instance, 
continuous functions with compact support. 

3. In the following we define a third multiplication 
which does not suffer from this discrepancy. It reduces 
to ordinary multiplication for continuous functions. 
However, it is defined only for a rather limited class of 
distributions. 

Definition 7. Let Sand T be such that SO(z) and 'fO(z) 
exist. Let cf>E (~'). Then 

+ao 

S@T·cf>= lim J [SO(X+iE)-SO(x-iE)] 
.-+O-f-

-00 X[TO(x+iE)- 'fO(X-iE)]cf>(x)dx. 

If Sex) and T(x) are continuous functions, then 
SO(X+iE)-SO(x-iE) converges to Sex) uniformly in 
every compact interval on the real axis, and in the 
same way 'fO(X+iE)- 'fO(X-iE) converges to T(x). 
Consequently, the foregoing limit exists and equals 
.1-00 +ooS(x) T(x)cf> (x)dx. Thus for continuous functions 
this multiplication reduces to the ordinary multiplica­
tion. If Sex) and T(x) are arbitrary distributions, then 
the limit mayor may not exist. 

Examples. 

1. f+ooO(X)O(X)cf>(X)dX 
-00 

+00 
= lim - (21r)-2J [(X+ZE)-L (X-iE)-l]2cf>(x)dx 

.-+O-f-
-00 

+00 

= - (21r)-2J 2P(x-2)cf>(x)dx- lim (2n)-l 
.-.0+ 

-00 
+00 

X J [(X+iE)- (X-iE)]cf>(x)dx. 
-00 

Since the second term contains the factor (E)-I, the 
limit does not exist. 

+00 
2. J o(x)P(x-l)cf>(x)dx 

-00 1 +00 [ 1 1] 
= lim -- -----

.-.0+ 4?ri f-oo X+iE X-iE 

X [_1_. +_1_. ]cf>(X)dX 
X+1E x-u 

= lim _~ J+<Xl[ 1 1 ]cf>(X)dX 
.-.0+ 4?ri _00 (X+iE)2 (X-iE)2 

1J+oo 
= -- o'(x)cf>(x)dx=tcf>'(O). 

2 _00 

Thus in this particular case the limit does exist. 

The examples show that for o(x)o(x) the multiplica­
tion is not defined. One could attempt to make it 
defined by taking a "finite part" of the integral, for 
instance by declaring the finite part in example (1) 
to be the first term [which is equal to - (1/21r2)P(X-2)]' 
However, we will not carry out this possibility in this 
paper. 

A more satisfactory solution of the multiplication 
problem can be obtained by making use of the Fourier 
transforms of the factors. This has been carried out in 
Bremermannl6 and has been applied to problems in 
quantum field theory. In the remaining part of this 
paper we will provide a basis for Bremermannl6 by 
studying Fourier transforms and convolutions. 

Restriction of the Support of a Distribution 
(Multiplication with a Step-Function) 

The step-function 8 (x) is defined as follows: 

{
1 forx>O 

8 (x) = 
o for X<O. 

For x=O, 8(x) is undefined [sometimes 8(0)=t is 
used]. Note that 8(x) is the limit of the "finite step 
function 8 0,b(X)" (compare example 3, Sec. III), 
however, the Cauchy integral of 8 0,b(X) does not 
converge for b ~ 00. 8(x) has no Cauchy integral 
[though in an improper sense we can associate - (21ri)-l 
Xlog( -z) as "improper Cauchy integral" with 8(x)]. 

If T(x) is a continuous function, then we may 
multiply T(x) with 8 (x) and the product is well 
defined. If T(x) is only a generalized function, then we 
encounter difficulties. For example, what is the meaning 
of o(x)8(x)? Formally one could write .1-00+ooo(x)8(x) 
Xcf>(x)dx = 8 (O)cf> (0), however, 8(0) is undefined. 

For any distribution T the following is true: If cf>l 
is a test function with support in x>O, then 

+00 +ao 

J T(x)8(x)cf>l(X)dx= f T(X)cf>l(X)dx, 
-00 -<Xl 

while if cf>2(X) has support in x<O, then 

+00 
J T(X)cf>2(X)dx=0. 

-00 

These properties hold because 8(X)cf>l(X) and 8(X)cf>2(X) 
are (Coo) test functions. 

To define T(x)8(x) we approximate 8(x) by (Coo) 
test functions 'lj;j(x) with support in x>O. Since the 
convergence is not uniform, the limit T·'Ij;J-rp need not 
exist. If, however, this limit does exist for all cf>, then 
we denote it by 

+ao f T(x)8(x)cf>(x)dx. 
-00 
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Correspondingly we define the limit 

f+«> T(x)9( -x)cp(x)dx. 
-00 

The values of f-",+"'T(x)[9(-x)+9(x)]cp(x)dx 
and f-ct,+"'T(x)cp(x)dx need not agree in general, 
however, the two values agree for every test function 
whose support does not contain the origin. Hence 

T(x)[1-9( -x)-9(x)] 

is a distribution whose support consists at most of the 
origin. Consequently it is a finite linear combination of 
o(x) and its derivatives. Let us denote this distribution 
byQ. Then 

T(x) = T(x)9( -x)+ T(x)9(x)+Q(x). 

Examples. 

1. T(x)=o(x+l)+o(x)+o(x-l), 

then 

2. 

T(x)9( -x)=o(x+l) 

T(x)9(x)=o(x-l) 

9(x)=o(x). 

T(x)=o(x). 

In this case the limit T(x)9(x) does not exist. 
Definition 8. If T is a distribution such that T(x)9(x) 

and T(x)9(-x) exist, then we call T "a distribution 
with a polelike singularity at the origin." 

VIll. CONVOLUTIONS 

The convolution product of two functions, f(x) 
and g(x), denoted by h= f*g, is a new function defined 
by the formula 

h(x)= f+«> f(x-t)g(t)dt= f+«> g(x-t)f(t)dt. 
-00 -00 

While this product does not converge for arbitrary f 
and g, convergence is assured if the functions are 
bounded, and if one of the functions has compact 
support. On the other hand, if f and g are distributions, 
this definition is not suitable; we require, rather, the 
definition of h·cp for test functions cpE(:O) [or some 
other appropriate space]. By formally interchanging 
the order of the integrations in h·cp, one obtains 

Iz·cp= i:"'h(X)CP(X)dX= f~ {i:f(x-t)g(t)dt }CP(X)dX 

~ f'" f"'f(X)g (t)cp (x+t)dxdt. 
-«> -'" 

This form is used by Schwartz to define a convolution 
for distributions. Convergence of h·cp is not in general 
assured unless the support of f(x)g(t)cp(x+t) is compact 
in the (x,t) plane. We note that the support of </>(x+t) 
is not compact in the plane even for </>(x)E (:0), so 
that the classes of distributions for which a convolution 
product is defined are somewhat restricted. We will 
not, however, discuss the finer convergence properties 
here but will proceed immediately to consider the 
Cauchy integral of a convolution product. 

The Cauchy integral of T*S is defined as 

1 +«> f+«> 1 =-. f T(x)S(t) dxdt. 
2n -«> -eo x+t-z 

If we formally integrate first over x, and if 'fO exists, we 
obtain 

(T~S)(z)= f+«> 'fO(z-t)S(t)dt. 
-<tl 

This has the appearance of the convolution product as 
defined for functions, except that z is now complex 
and the distribution T(x-t) has been replaced by 
'fO(z-t). We will take the above equation as a definition. 

Definition 9. Let S, TE (fib V'), O<b:::; <Xl. Then we 
define the convolution of T, S by 

(T*OS)(z) = f+«> 'fO(z-t)S(t)dt, 
-co 

provided that the integral converges. We note that S, 
TE(abV') guarantees the existence of 'fO(z), SO(s). 

Lemma 3. Iffor Izl ~ <Xl, jSO(z)'fO( -z) I <A Izl-1 ...... , 
a>O, where A is a constant, then (T*oS)(z) exists. 

According to theorem Sa we can replacef _ +«>'fO(z- t) 
XS(t)dt by an integral over a curve Ga as long as 
as 'fO(Z_lf) , t' complex, remains holomorphic in the 
strip with boundary Ga ; that is, the replacement is 
valid for z outside Ga : 

f+«> 'fO(z-t)S(t)dt= f 'fO(z-t')SO(t')dt', 
-00 Ca 

I Imz I > I Imt' I· 

'fO(S-tf) behaves for large t' as 'fOe -t'), hence 

I 'fO(z-t')SO(t') I <A It 1-1-a 

for I t' I ~ 00, and the integral converges. 
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Theorem 6. If (T*oS)(z) exists, then 

2S3 

f
-too f 1 1 

'fO(z-t)S(t)dt= 'fO(z- tl)SO(t')dt' =-. f fO(XI)SO(t') I I dx'dt' 
-00 Ca 2n CaXCa x +t -z 

If-toof-too 1 -too 
=-. T(x)S(t)--(dxdt) = f SO(z-x')fO(x')dx'=f SO(z-x)T(x)dx, 

2n -00 -00 x+t-z Ca _ 

where Ca is such that zl2 lies outside the strip bounded 
by Ca. 

Corollary. (T*OS)(z) = (S*OT) (z). 
Proof. If the first integral exists, then it can be 

replaced by the second according to theorem Sa, where 
Ca has to be chosen such that 'fO(z-t) is holomorphic 
in the strip bounded by Ca. This is the case if and only 
if z lies outside the strip, and is therefore true if z/2 
lies outside. 

We then substitute for fO(z-t') the integral 

1 f-too 1 
- T(x) dx, 2m _ x- (z-t') 

which again can be replaced by 

1 i 1 - 'fO(x') dx' 2m Ca X'- (z- t') , 

where x' is complex and z-t' outside Ca. The last 
condition is satisfied if z/2 lies outside Ca. 

Since we now integrate only over well-behaved 
holomorphic functions, we can write the iterated 
integral as a double integral over CaX Ca (integral III). 
By contracting Ca to the real axis and by an argument 
analogous to that of theorem 4, we obtain the double 
integral IV. But by writing the integral over CaXCa 
again as two successive integrals, but now in different 
order, and reversing the previous steps, we obtain 
integral V, which leads immediately to integral VI. 

Lemma 4. If either T or S is a distribution with 
compact support, then (T*oS)(z) exists. 

We can assume that S has compact support, which 
trivially implies the existence of 

f-too fO(z-t)S(t)dt. 
--00 

Theorem 7. The convolution product (T*oS)(z) is 
a holomorphic function for all z with 1m z;cO. For 
Izl ~ <Xl the function (S*oT)(z) tends to zero. It defines 
a distribution T*S for all cpE(ab), O<b~ <Xl which 
vanish for Izl ~ <Xl as A Izl-l-a, a>O, A constant: 

T*S·cp= i (nOS) (z)cp(z)dz. 
Ca 

Proof. To show that (T*oS)(z) is holomorphic, we 

make use of theorem 7 to write (T*oS) (z) as the 
double integral: 

f OOfOO 1 
(T*oS)(z) = T(x)S(t)--(dxdt). 

-00 -00 x+t-z 

T(x)S(t), the direct product of T and S, is a distribution 
on R2, the Euclidean space of two real variables, 
while [X+t-Z]-l is a (Coo) function on R2. The further 
argument that the foregoing integral is a holomorphic 
function of z for Imz;cO is exactly analogous to the 
proof of theorem 1. 

For Izl ~ <Xl the function l/(x+t-z) tends to 
zero unformly in every compact subset of R2, together 
with all its derivatives. Hence, by continuity, (T*oS)(z) 
tends to zero. This implies that fca(S*oT) (z)cp(z)dz 
converges for cp(z) that behave as A Izl-l_, a>O, at 
infinity. Hence T*s·cp=S*T·cp is defined for every cp 
in question. Linearity and continuity are obvious, and 
the theorem is proved. 

Reproducing property of convolutions with c5(x): 

f

-too -too 
'fO(z) = 'fO(z-x)c5(x)dx= f T(x)f,O(z-x)dx 

-00 _ 

for Imz;CO. 

The first equality is obvious, since for Imz;cO, fO(z-x) 
is a holomorphic function of x for all x. The second 
equality follows from theorem 7, but may be verified 
directly: f,°(s-x) = (1/21ri)(ljx-z); thus, J-oo-tooT(x) 
Xf,°(z-x)dx= (lj21ri)T· [X-Z]-l= 'fO(z), and we see 
that the Cauchy integral fO(z) is the same as the convolu­
tion product of T and c5, 

The convolution product can obviously be generalized 
to three or more distributions, for if T*S=S*T exists, 
and if U has compact support, we may define 

[(S*T)*CU]O= foo (S*oT) (z-t)U(t)dt 
-00 

= foo fooSO(z-x-t)T(X)U(t)dxdt. 
--00 -00 

The product is associative and commutative. 
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IX. FOURIER TRANSFORMS 

The Fourier transform of a function is defined as 

and for a distribution: 

Remark. Sometimes a factor 211' is included in the 
exponent of e: tftrip". We will use the transform defined 
without this factor. 

Theorem 8. If T is (J, distribution with compact 
support, then T· eip", exists and is a holomorphic function 
of p in the whole complex p plane. We will write 

T'eip,"= ff(T,p). 

The function eip", is for every p a test function in (8), 
hence T· eipx exists for TE (8'). That T· eipx is a 
holomorphic function of p for all p follows as in theorem 
1 by showing that it is complex differentiable with 
respect to p. (Schwartz! has proved the following 
stronger result: Necessary and sufficient for T to have 
compact support is that fj(T,p) is an entire function of 
exponential type :::.:;C, where C is some constant; see 
footnote 1, Vol. 2, theorem XVI). 

Lemma 5. Let TE(8'). Then 

ff(T,p)=T.e iPX=! J'O(z)eiP'dz. 
Co 

This is an immediate consequence of theorem 5. We 
have nevertheless stated it as a different lemma because 
it permits us to compute some Fourier transforms as 
residues. 

Examples. 

1. 

This can also be computed as a residue: 

+«> 1i 1 
f a(x)eipxdx= --. -eipzdz 

-cc 211't Co Z 

1 i 1( ipz (ipZ)2 ) 
=-- - 1+-+--+··· dz=l. 

211'i Co z 11 2 ! 

2. For the derivatives of the 0 function we have 

This, again, can be computed as a residue. 
3. If TE(8') has point support at x=O, then ff(T,p) 

is a polynomial in p. 
If T has point support at x=O, then T(x) is a finite 

linear combination of o(x) and its derivatives. The 
result follows then from example 2. 

Theorem 9. Let TE (8'). Then 

T(n) 'eipx= (-ip)nT·eipx= (-ip)nff(T,p), 

where T(n) is the nth derivative of T. 
We have by definition: T(n)·eipx =(-1)nT·(dn/dx) 

Xeipx= (-ip)nT·eiP:r:. 

N oncompact Support 

If the support of T is not compact, then the situation 
is quite different. For ordinary functions, Plancherel's 
theorem states that, if f(x) is square integrable from 
-00 to +00, then fj(f)=g(p)=f-«>+oof(x)eiPxd~ exists 
and is square integrable. In particular the lUverse 
Fourier transform fjinv(g)=. f*(x) = f-",+"'g(p)e-ipxdp 
exists, and f(x) = (1/211')f*(x). {If one writes.the factor 
211' in the exponent, then fjinv[ff(f)J= I, WIthout the 
factor (211')-1.} However, as was seen before, the 
Fourier transform of the nth derivative of the 0 function 
is (-ip)n, n~O; for this function the inverse Fourier 
integral obviously does not converge in the ordinary 
sense. 

One possibility to deal with functions that behave like 
a polynomial for I x I --* 00 has been elaborated by 
Bochner.21 In taking the Fourier transform of I(x), 
the function is divided by 1 + I x I \ where k is larger 
than the order in which f(x) tends to infinity. This 
division introduces an "error" which is an additive 
polynomial in p, so that f-oo +00 f(x )eipxdx is finally 
defined modulo polynomials. 

Schwartz's Fourier transforms of "tempered distribu­
tions" (which include functions behaving like poly­
nomials at infinity) are defined by means of Parseval's 
formula. In contrast we define the transform by 
splitting the integration from - 00 to + 00 into two 
parts, from - 00 to 0 and from 0 to + 00, which gives 
us a pair of holomorphic functions in the upper and 
lower half-planes. This definition is equivalent with 
the usual one in the sense that we obtain the "analytic 
continuation" (as defined previously) of the ordinary 
Fourier transform (Compare also Carleman6

). (We 
prove this for square integrable functions. The question 
of equivalence with Schwartz's notion for distributions 
will be discussed in a further paper.) 

Space of Rapidly Decreasing (C"') Functions 

Let (3) be the space of all (Coo) functions that vanish 
faster than any power of x for I xl --* 00 ("rapidly 
decreasing functions"). Convergence in (3) is defined as 
follows: A sequence of functions <PiE(3) is said to 
converge to 0 in (3) if, and only if ,the following is true: 
Let P be an arbitrary polynomial, and let Q be an 

21 S. Bochner, V orlesungen uber F ouriersche I ntegrale (Leipzig, 
1932). 
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arbitrary "polynomial of derivation," that is 

Then P(Q*CPj) converges to zero uniformly on the 
whole real axis. 

Tempered Distributions 

The elements in the dual space (S') are called 
"tempered distributions." Schwartz! has shown: T is a 
tempered distribution exactly if TE (///), and T(x) 
behaves like a finite power I x I k for I z I --> 00. 

Theorem 9. Let TE (S'). Let the support of T be 
contained in some "half axis" a<x< + 00, a~ - 00. 

Then T'e;px exists and is a holomorphic function of p 
for 1m p>O. 

Proof. Let a(x) be a (Coo) function equal to 1 for 
a:S;x, and a(x):=O for x:S;a-e, e>O. Let p=p'+ip". 
Then, for p">O, eipx=eip'xe-p"x vanishes exponentially 
for x --> 00, consequently a (x)eipxE (S) for Ipm>O. 
Consequently T'a(x)eipx=T'e;px exists. That this 
function is holomorphic for Imp>O follows as in the 
proof of theorem 1 by differentiating with respect to p. 
Analogously one obtains: 

If TE (S') and has support in - 00 <x<b, b~O, 
then the Fourier transform is holomorphic for Imp <0. 

For the general case of noncompact support, there is 
usually no domain in the complex p plane for which 
the whole integral converges. We therefore split the 
integral into two parts. This may seem to be a somewhat 
arbitrary procedure. The deeper justification for it, 
as we will see, lies in the fact that the Fourier transform 
of the kernel of the Cauchy integral involves a step 
function. 

Definition 10. Let TE (S'), and let T have at the 
origin at most a pole like singularity. Then we define: 

+00 

Y(p) = f T(x)9(x)eipxdx+!Qx'eiPx for Imp> 0, 
-00 

+00 

Y(p) = f T(x)9( -x)eipxdx+!Qx'eipx for Imp <0, 
-00 

where Q is the distribution with support at the origin 
defined in Sec. VII. 

For f-oo+OOT(x) 9 (x)eipxdx, we will also write 
foooT(x)eipxdx, and correspondingly for f-oo +ooT(x) 
X 9( -x)eipxdx, we write f-ooOT(x)eiPxdx. 

From the preceding theorem follows that Y(p) is 
holomorphic in the complex p plane except on the real 
axis. (Qx'eiPx is a polynomial in p.) 

We will call Y(p) the Fourier transform of T, and 
we will also write: Y(p) = fJ(T,p). Thus the Fourier 
transform of a distribution is again given by a pair of 
holomorphic functions, which mayor may not corre­
spond to a distribution. 

Theorem 10. (Connection between our definition and 
the ordinary definition of Fourier transforms): Let T(x) 
be a square integrable function. Let the Fourier transform 
of T in the ordinary sense be denoted by F(T,p). Then the 
analytic conti..nuation of F(T,p) (as defined in section 
V II) equals T(p): 

F!(T,p)= Y(p) for all p with Imp=O. 

For the proof we need the Fourier transform of the 
kernel of the Cauchy integral, and we therefore first 
prove the following lemma: 

Lemma 6. (Fourier transform of the kernel of the 
Cauchy integral.) The following formulas hold: 

1 f+oo 1 
for Imp'>O: - --eipxdp=eip'x9(x) 

2m -00 p-p' 

1 f+OO 1 
for Imp'<O: -. --lPxdp=-eiP'x9(-x). 

271'1 -00 p-P 

Proof. Let Imp'> 0, then eip'x9(x) is a square 
integrable function, hence, by Plancherel's theorem, 
its Fourier transform exists and is square integrable, 
and we have 

1 
-fJfJinv[eip'x9 (x)] = eip'x9 (x). 
2?r 

Now 

f

+OO 
fJinv[eip'x9(x)]= e-i(p--p')x9(x)dx 

-00 

e-i(p--p')R-l 1 

Hence 

= lim-----
R_oo -i(p-p') i(P-P')· 

fJ[ 1 , x]=eiP,x9(X). 
2?ri(p-p') 

Analogously one proves the second formula. 
Proof of the theorem. F(T,p) exists and is a square 

integrable function by Plancherel's theorem. Being 
square integrable, F has an analytic continuation P. 
We have by definition 

1 +00 1 
FO(T,P')=-J -F(T,p)dp 

2?ri -«> p-p' 

1 +ool{+oo } 
=-. f -, f T(x)eipxdx dp. 

271'1 -00 p-P -00 

Since all the functions involved are square integrable, 
and since f-RRT(x)eipxdx converges for R --> 00 to 
F(T,p) in L2 norm and the same is true for f-RR[l/ 
(p- p') ]eipxdp, we can exchange the order of integration 
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and write 

Fl(T,p') 

1 -too {-too 1 } 
=-. f T(x) f --,eipxdP dx 

2m -00 -00 p-p 

-too 00 

= J T(x)®(x)eipl"'dx= L T(x)eip1zdx 
-00 0 

for Imp'>O, 

-too 0 

= - f T(x)®( -x)eip'zdx= - f T(x)eip1xdx 
-00 -00 

for Imp'<O. 
Hence 

Fl(T,p')=sgn(Imp')P(T,p') = T(p'), 

which proves our theorem. 

and analogously 

f
o n! 

xneipzdx= , for Imp<O. 
-00 (-ip)"+l 

Thus 
_ (-l)n+1n! 
T(p) = sgn(Imp) . 

(ip)n+1 

On the other hand, we have 

(-l)n+ln ! 
OlCn) (p) = sgn(Imp) . 

Thus 
27ripn+l 

T(P) = [211"/ (i)n]ol(n) (p). 

We can combine the factor (i)n together with xn to 
obtain 

Theorem 11. Let T be as in definition 10. Then 

d foo 
-T(p) = (ix)T(x)eipxdx+!Qz· (ix)eipx for Imp> 0 
dp 0 

and 

d fO 
-t(p) = (ix)T(x)eip.<dx+!Qz· (ix)eipz forJmp<O. 
dp -00 

This is shown as in theorem 1. 

Examples. 

1. T(x)=l 

L
'" eipR-1 1 

eipzdx= lim ---= --, 
o R~ ip ip 

f
o 1-eipR 1 
eipxdx= lim . , 

-00 R-+oo ip ~p 

Imp>O 

Imp<O. 

Since T(x) is continuous at the origin, the distribution 
Q vanishes. Thus we obtain 

T(p)==F1/ip for Imp~O. 

The right-hand side is equal to 211"i)1(p), the analytic 
continuation of 211"0 (p). This result is consistent with 
the usual theory, in which one has 

~ f-tooeiP"'dX=O(P). 
211" -00 

2. T(x)=xn, n integer, n20. 

Since T(x) is continuous, Q vanishes. We obtain at 
once 

Inverse Fourier Transform 

Let f(x) be a square integrable function; then 
according to Plancherel's theorem 

+00 

5'(j,p) = f f(x)eipzdx 
-00 

exists, and ff(j,p) is square integrable. Therefore 

ffinv[ 5' (j,p) ,x J = f-too 5' (j,p )e-iP"'dx 
-00 

exists, and we have 

(1/211") 5'inv[5' (j,p),xJ = f(x). 

As we have seen, the Fourier transform of o(n)(x) is 
(-ip)n. While this is not a square integrable function, 
and the inverse Fourier transform does not exist in the 
ordinary sense, our extended definition of a Fourier 
transform gives the correct inverse in the sense of 
giving the correct analytic continuation of o(n) in the 
complex x plane: 

ffWn"p)=o(n).e ip",= (-ip)n, 

1 00 - i (_ip)neipzdx~ tinv[(_ip)n, xJ=ol(n)(x). 
211" -'" 

We will investigate this situation in more generaltiy. 
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Theorem 12. Let T be a distribution with compact 
support. Let ff(T,p) = f(p) be bounded by a polynomial 
for p ~ =F 00, p real. Then the inverse Fourier transform 

finv(z)= f"'f(p)e-iPZdP for Imz<O, 

° 

exists, and 

= fO f(p)e-iPzdp for Imz> 0, 
-00 

1 _ 
_ pnv(z) = Tl(Z), 
21r 

where Tl(Z) is the analytic continuation of T. 
Proof. Since T has compact support, f(p) exists 

and is holomorphic for all p, I p I < 00, and has in 
particular no singularities at the origin. Consequently, 
no distribution corresponding to Q has to be in~luded 
in the definition of Tinv(z). The existence of 'J'inv(p) 
follows immediately from the assumption about the 
behavior of f(p). 

For Imz<O, we have 

Fourier Transforms of Sex), o+(x), £(X), 
and P(x-n ). 

+<X> 

1. f E>(x)eiP'"dx= - (l/ip) for Imp> 0, 

-00 =0 for Imp<O. 

The right-hand side equals 1ro+O(p) (compare Sec. V). 
Hence 

2. 

According to lemma 6, 

1 +<X> 1 -- f -eiP'"dx=2e'PE>(-p). 
i1r -00 X+iE 

The integral converges uniformly in any compact 
interval of the real p axis to 2E>( -p). Hence 

and 
ff[o+ (x) ,p ]=2E>( -p), 

ffinv[o+ (x),p] = 2E>(p). 

3. According to examples 3 and 4 of Sec. V, we have 

Hence 
where the closed contour Co around the support of T 
is chosen such that IIm~1 < IImzl for all ~ on Co. ff[P(x-l),p]=i1r[1-2E>(-p)]=i1rE(p), 

Then Im(~-z»O for all ~ on Co. We have where 

Now 

finv(z)= H~.£R {ioto(~)eiP~d~ }eiPzdP 

= lim i toW{ fReiP(r.Z)dP}d~. 
R-+", Co 0 

converges uniformly to -[l/i(~-z)] for ~ECo. Hence 
we can interchange limit and intergration and we obtain 

1 +<X> 1 
finV(Z)=i! toW-d~=ii T(x)-dx 

Co ~-z -00 x-z 

= -21rto(z) for Imz<O. 

In an analogous manner one obtains 

finv(z)= 21rto(z) for Imz>O. 

Hence f inv (z)=21rTl(Z). This proves our theorem. 

{ 
1 for p>O 

E(P)= 
-1 for p<O. 

4. Analogously one computes: 

s. 

Hence 

ff[E(P),X]= 2iP(x-1). 

(_l)n-l dn- 1 

P(x-n ) P(x-1). 

(n-1)! dxn- 1 

(_l)n-l (dn-1 ) 
ff[P(X-n),p] ff -P(x-1),p 

(n-1)! dxn- 1 

Hence 

(ip)n-l 
=--ff[P(x-1),p]. 

(n-1)! 

i1rE (p)(ip) n-l 
ff[P (x-n) ,p ] 

(n-1)! 
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Fourier Transforms and Convolutions 

Let f, g be square integrable functions; then 

where f*g is the convolution of f and g. As this is one 
of the most important formulas in the theory of 
Fourier transformations, we would like to extend it to 
distributions. 

Theorem 13. Let SE (8') and TE (8'), and let 
ff(S,p) and ff(T,p) be bounded by polynomials for 
p __ ±oo. Then: 

(a) 
1 

(S*lT)=-ff inv[ff(S,p), ff(T,p)] 
271' 

1 £'" =- fJ(S,p)fJ(T,p)e-ipzdp for Imz<O, 
271' 0 

1 fO 
=- ff(S,p)fJ(T,p)e-ipzdp for Imz>O. 

271' -00 

Proof. T has compact support. Therefore, (S*lT) exists, 

'f+OO fb (S*lT)(z) = Sl(Z- x)T(x)dx= Sl(Z- x)T(x)dx 
-00 a 

converges uniformly in x for R -- 00, x in any compact 
interval of the x axis, z fixed with Imz<O. Therefore, 
when substituting this expression for Sl, we may 
interchange the order of integration and obtain 

b 

(S*lT) (z)= £ Sl(z-x)T(x)dx 
a 

1 b{ 00 } 
= 271' i .£ ff(S,p)e-ip(z-x)dp T(x)dx 

100 {OO } 
=- i fJ(S,p)e- ipz f eipxT(x)dx dp 

271' 0 -00 

1 £00 
=- fJ(S,p)fJ(T,p)e-ipzdP, Imz<O. 

271' 0 

A similar argument for Imz>O completes the proof. 
(b ) We establish by analogous methods under the 

same conditions 

fJ(S*T, p)= fJ(S,p)fJ(T,p). 

Theorem 13 can be generalized to cases with less 
stringent conditions on the distributions Sand T·. 

Example. 
N 

SE (8'), T(x) = L a.o·(x), 
)1=0 

for some a, b finite (because T has compact support). then 
From theorem 12, N 

1 i'" - fJ(S,p)e-ip(z-x)dp, Im(z-x)<O 
271' 0 

1 ° - f ff(S,p)e-ip(z-x)dp, Im(z-x»O. 
271' -00 

We take x real, Imz<O. But foRff(S,p)e-ip(z-x)dp 

ff(S*T, p)= ff(S,p) ( L a.(ip)·) . 
• =ll 
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On the Capacity of the Icosahedron 

JAMES CONLAN, J. B. DIAZ,* AND W. E. PARR 
U. S. Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland 

An application of Dirichlet's principle, using a simple trial function suggested by the symmetries of the 
problem, is shown to furnish fairly close, readily computable, upper bounds for the capacity of any regular 
solid. 

1. INTRODUCTION 

T HE main purpose of the present note is to show 
how an application of Dirichlet's principle (see, 

e.g., P61ya and Szego,1 p. 43) using a simple trial 
function [see Eq. (5) J furnishes fairly close, readily 
computable, upper bounds for the capacity of a regular 
solid. While this function seems to be naturally dictated 
by the symmetry of the domain in question, and may 
be used a priori independently of the variational 
considerations of Sec. 2, the Euler-Lagrange argument 
given there suggests that (in a certain sense) it is the 
"best" trial function of such a simple nature. A similar 
trial function has been used in the estimation of the 
torsional rigidity by Diaz and Weinstein.2 In Sec. 3, 
an attractive attempt at improving the bounds for 
the capacity is analyzed. This attempt was developed in 
seeking to improve the numerical bounds obtained in 
Sec. 2. It is shown that a certain minimization process 
[which leads to the inequalities (13)J actually furnishes 
worse upper and lower bounds than the simple algebraic 
process leading to the inequality (16). This byproduct 
of the computation of numerical bounds for the capacity 
in Sec. 2 is believed to be of interest in itself, since the 
remark made in Sec. 3 applies equally well to many 
quadratic functionals in mathematical physics, and not 
only to the particular one under consideration here. 

2. UPPER BOUNDS FOR THE CAPACITY 

For any two sufficiently well-behaved functions 
f(x,y,z) and g(x,y,z), define the inner product (j,g) by 

(j,g) = f f f gradf·gradgdV, 

D 

(1) 

where D is the region exterior to a given closed bounded 
smooth surface S. An upper bound for the capacity C 
of S is given by 

(1/41l') (w,w) 2:: C, (2) 

where w(x,y,z) is a sufficiently smooth function such 
that w(x,y,z) = 1 if (x,y,z) is a point of S, and w=O(r-1

) 

as r= (x2+y2+z2)1 approaches infinity. 

* Also at the Institute for Fluid Dynamics and Applied Math­
ematics, University of Maryland. 

1 G. P6lya and G. Szego, "Isoperimetric inequalities in math­
ematical physics," Annals of Mathematics Studies, No. 27 (Prince­
ton University Press, Princeton, New Jersey, 1951). 

2 J. B. Diaz and A. Weinstein, Am. J. Math. 70, 107 (1948). 

Let P be a regular polyhedron of n faces, each face 
being a regular polygon of r edges. Suppose that P 
is circumscribed about the unit sphere with center at 
the origin. Let P have one face F contained in the plane 
X= 1, with the x axis passing through the center of F; 
and let one edge, call it E, of F be parallel to the y axis. 
This serves to fix the position of P in space. Now 
consider the triangle T, with E as one edge and the 
point (1,0,0) as opposite vertex. If F is a regular 
polygon of r edges, then F will consist of r triangles 
congruent to T. Let the vertices of T be (1,0,0), 
(l,a,b), and (1, -a, b), and let a=a/b. Then 

(w,w) = f f f/gradw/2dV 

D 

where we assume w to be symmetric with respect to 
the polyhedron P, and also to be symmetric with 
respect to each of the r triangles in the face F. 

If we let w(x,y,z) = f(x) in that portion D' of D 
covered by the integration on the extreme right of (3), 
then 

(w,w) = 2nrfoodx fb"'dZi'" [J'(x)]2dy 
1 0 0 

= nrab2 jOOx2[J' (x)]2dx. (4) 
1 

To minimize this expression for (w,w) (with respect to 
all suitable functions f) note that by the Euler-Lagrange 
equation 

fJ d fJ 
-{x2[J'(X)J2} ---{x2[J'(x)]2} =0, 
fJf dx af' 

we obtain 
2xf' (x) + x2f"(x) =0; 

and since }(1)= 1 and f(x)=O(x-1) for large x, we have 

f(x) = 1/x, (5) 

so that (5) gives the best possible choice of f. 
An improved value for (w,w) can be obtained by 

letting 

w.(x,y,z) = (l/x)+ (X /y/ +JLz)(1/i1-l/x2) (6) 
259 
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in D' and minimizing (w,w) with respect to >. and p.. 
Note that the choice of w given by (6) still satisfies the 
boundary conditions on F and at co. In accordance 
with the well-known Rayleigh-Ritz method, the first 
term on the right-hand side of (6) is just the function 
arrived at in (5), while the second term is just a simple 
"coordinate function" (in the terminology of Walther 
Ritz) which satisfies the homogeneous boundary 
condition (i.e., it has value zero on the boundary). 
From (6) we have 

f "" Jbz a. 
(w,w) = 2n1' dx dzi Igradwl 2dy 

1 0 0 

f ao rb% az{ 1 [2Y( 3 2 )] 
= 2n1' 1 dx J 0 dz i x4 + >. - x2 - x4 + xli 

+p.[ -:( - : + :) ]+>.{ (- : + :ry 

+( ~ - ~r]+P.2[Z2( - : + :Y+(~ - ~)] 

{
lab b (a2b

2 
1 ) =2n1'all- __ >. __ p._+>.2 -+-

2 6 3 12 6 

(7) 

Parr,4 by using an extension of the results of P6lya­
Szego obtained the upper bound C5, 1.084 for the 
icosahedron, and C5, 1.3359 for the cube; Payne and 
Weinberger5 obtained, by still another method, the 
upper bound C5, 1.336 for the cube. 

3. A MIRAGE 

In this section we discuss an attempt to derive new 
bounds for the capacity of a surface S. We introduce the 
functions u, v, w (functions of x, y, and z) where 

u= 1, on S, .1u=O in D, 
u=O(1/1') as l' approaches co ; 

.1v=O in D, v=O(1/1') as l' approaches 00 ; 

v not identically zero; 

W= 1 on S, w=O(1/1') as l' approaches 00. 

Here .1 denotes the Laplacian operator (iJ2jiJx2) 
+ (iJ2jiJy)+ (iJ2jiJz2). 

The function wsatisfies the same boundary conditions 
as u, while the function v satisfies the same partial 
differential equation as u. It is well known (see, e.g., 
Diaz6) that an upper bound for the capacity C may 
be obtained in terms of w alone, as follows: 

C5, (lj4?r) (w,w) ; (9) 

while a lower bound for C may be obtained in terms of 
valone, as follows: 

1 (V,U)2 
---<C 
4?r (v,v) - , 

(to) 

For (w,w) to be a relative minimum (as a function of where, by Green's identity 
>. and p.), it is necessary that 

iJ(w,w) {ab (a
2
b
2 1) all-} 

--=2n1'ab2 --+2>. -+- +p.- =0, 
iJ>. 6 12 6 4 

iJ(w,w) {b (b
2 1) ab

2
} --=2n1'all- --+2p. -+- +>.- =0, 

iJp. 3 4 6 4 

(8) 

which is a system of linear equations to be solved for 
>. and p.. 

On applying the foregoing to the icosahedron, we have 

n=20, 1'=3, b=y'3{!(y'5+1)}-2, a=1/y'3 

(see Coxeter), and this gives C5, (1/4?r) (w,w) 5, 1.096. 
Use of the volume radius (see P6lya-Szego,1 p. 63) 
gives the lower bound 1.0645,G. 

For the case of the cube we have n=6, 1'=4, b= 1, 
01= 1, and so C5, 1.6103. Use of the volume radius gives 
the lower bound 1.2405,C. 

a H. s. M. Coxeter, Regmar Polytopes (Methuen and Company, 
Ltd., London, 1948). . 

(v,u) = f f :~dS, (11) 

8 

and n is the inner unit normal to S. 
The following process, which employs the functions 

wand v together, rather than singly, would appear, 
at first glance, to furnish better upper and lower 
bounds [see Eq. (13)J for the capacity C than are 
given by wand v, individually, in Eqs. (9) and (10), 
respectively. 

By Schwarz's inequality, we have 

(w, U-V)25, (w,w) (u-v, u-v) 

• W. E. Parr, "Upper and lower bounds for the capacitance of 
the regular solids," Ph.D. thesis, University of Maryland, June, 
1960. 

• L. E. Payne and H. F. Weinberger, J. Math. and Phys. 33, 
291 (1955). 

6 J. B. Diaz, in Boundary Value Problems in Differential Equa­
tions, Proceedings of a Symposium conducted by the Mathematics 
Research Center of the U. S. Army at the University of Wisconsin, 
Madison, Wisconsin, April 20-22 (1959), pp. 47-83. 
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or 

(w,u)2-2(w,u) (w,v) + (W,V)2 

But 
~ (W,W)[(U,U)- 2 (u,v) + (71,71)]. (12) 

(w,u) = f f f gradw·gradudV, 

D 

and by Green's identity this is just 

- f f fWdudV+ f J~s= f f~=(U,U). 
D 8 8 

Thus 

(w,u) = (u,u). 

we obtain 

{ 1[ (V,W)2] t (u,u)-- (w,w)+--
2 (71,71) 

(w,w) { (v,W)2} 
~-- (w,w)---. (13) 

4 (71,71) 

Equation (13) furnishes the presumably better 
bounds for C obtainable by employing the functions 
wand fI together. However, from (9) and (10), in a 
readily understandable notation (using C_ to denote a 
lower bound for C, for example), 

(V,W)2 (V,U)2 
47rC_==--=--~ (u,u)=47rC ~ (w,w)=41rC-. 

(71,71) (71,71) 
On using the fact that dv=O in D and u-w=O on S, 

the preceding type of reasoning shows that Then (13) can be rewritten 

(v, u-w)=O, 

and hence 
(v,u) = (v,w). 

Thus, replacing (w,u) by (u,u) and (v,u) by (fI,W) in 
(12), and transposing, we obtain 

(U,U)2- (u,u)[(w,w)+ 2 (w,v)] 
~ - (w,v)2-2(w,w) (v,w) + (w,w) (71,71) ; 

or, completing the square on the left-hand side, 

{(u,u)-[Hw,w)+ (w,v)]P 
~ (w,w){ (71,71)- (v,w)+Hw,w)}. 

Since >.71 satisfies the same conditions as fI, where >. is 
any real number, we may replace v by >.71 throughout, 
If we replace fI by >.71 and minimize the right-hand 
side with respect to>. (in order to minimize the "error"), 

where 
{C-![C-+C_]P~iC-[C--C_], 

O~C_~C~C-. 

(14) 

(15) 

However, upon subtracting HC-+C-), the inequality 
(15) yields 

!C-!c-~C-HC+C-)~!C--!C_; 

that is, 

-!(C--C_)~C-HC_+C-)~HC--C) 
or 

{C-HC_+C-)}2~HC--C_)2. (16) 

Since C-~C--C_, the inequality (16) is actually 
sharper than (14). Thus, the process of minimizing with 
respect to >., which led to (13), actually furnishes worse 
bounds, (13), than the bounds (16), which were 
obtained purely algebraically, without any minimization 
whatever! 
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The ,Potential which mini~izes the lo~est eig~nvalue of the one-dimensional SchrOdinger equation is 
deterInlned among all potentials V for which the mtegral of Vn has the prescribed value k. For each value 
?f nand k this potential is f~~~d to be a sl;lecial case of the Epstein-Eckart potentials which were originally 
~ntroduce? becaus~ the S~hrodmger equation for them could be solved explicitly. The minimum eigenvalue 
IS determme.d and It provIdes a lower bound on the lowest eigenvalue of any potential for which fVndx= k. 
The expressIOn of t~s fact as an inequality yields an isoperimetric inequality. For an arbitrary potential, 
each value o.f n prOVl?es one lower bound on the lowest eigenvalue, the largest of which is the best. This 
best bound IS determmed for the square well, the exponential, and the inverse power potentials. In the 
case of the square well, it is compared with the exact value. In the limiting case n = lour result reduces 
to that previously obtained by Larry Spruch, who showed that the delta function has the minimum lowest 
eigenvalue among all potentials of given "area." 

1. INTRODUCTION 

UPPER bounds on the lowest eigenvalue of the 
Schrodinger equation can be obtained easily 

because this eigenvalue is the minimum of a certain 
variational expression. However, it is not so easy to 
obtain lower bounds, although various methods have 
been devised for obtaining them. Therefore, we have 
re-examined the problem of obtaining lower bounds 
from a different viewpoint, i.e., that of isoperimetric 
inequalities. We seek that potential which in a specified 
class of potentials, yields the minimum lowest eigen­
value. Once we find it, its lowest eigenvalue is a lower 
bound on the lowest eigenvalue of all the potentials 
in the specified class. The resulting inequality is 
called an isoperimetric inequality by analogy with the 
classical inequality A ~D/471' relating the length of a 
curve to the area A it encloses. This classical isoperim­
etric inequality is a consequence of the fact that of all 
closed curves of length L, the circle encloses the greatest 
area D/47r. 

Our analysis is confined to the one-dimensional case. 
We consider a two-parameter family of classes of 
potentials and, therefore, we obtain a one-parameter 
family of isoperimetric inequalities. Thus, we obtain a 
one parameter family of lower bounds on the lowest 
eigenvalue of a given potential. These bounds are 
explicit formulas, each merely involving an integral of 
some power of the potential. Naturally, the largest of 
the lower bounds is the best, but which is largest 
depends upon the potential. To illustrate the accuracy 
of the bounds, we determine the best one for a square 
well and compare it with the exact eigenvalue. We 
also obtain the best lower bound for exponential and 
inverse power potentials. In principle, our method 
applies to higher-dimensional cases, but it then leads to 
nonlinear differential equations which cannot be solved 

* The research in this document has been sponsored by the 
Office of Naval Research, Air Force Cambridge Research Lab­
oratories, Office of Ordnance Research. 

explicitly, whereas they can be solved explicitly in the 
one-dimensional case. These equations are given and 
some consequences of them are presented. 

One interesting aspect of our results is that the 
potentials which yield the minimum lowest eigenvalues, 
III the classes we have considered, are special cases of 
the potentials introduced by Epstein. Their potentials 
were introduced because they led to Schrodinger equa­
tions which could be solved explicitly in terms of known 
functions. 

The present investigation was undertaken to general­
ize the result, proved by Larry Spruch (unpublished), 
that the delta function has the smallest lowest eigen­
value of all potentials of given "area," i.e., of given 
integral of the magnitude of the potential. His result 
appears as a limiting case of our results. Our method of 
analysis is one which was devised previously to deter­
mine the shape of the strongest column of given length· 
and volume.2,3 In the course of the analysis, we also 
make use of a suggestion of H. F. Weinberger. In the 
final section we show by the same method that the 
usual upper bound for the lowest eigenvalue also 
results from an isoperimetric inequality. 

2. ISOPERIMETRIC PROBLEM 

The one-dimensional Schrodinger equation for the 
wave function u(x) of a particle of energy X in a 
potential - Vex) is, in appropriate units, 

uu+ V(x)u+Xu=O. (1) 

This equation has a quadratically integrable solution 
if and only if X has one of a discrete set of values called 
eigenvalues, which depend upon Vex). We seek the 
potentials Vex) which make stationary some eigenvalue 

1 P. S. Epstein, Proc. Nat. Acad. Sci. 16, 627 (1930). 
2 J. B. Keller, Archive Ratl. Mech. and Anal. 5, 275 (1960). 
31. Tadjbaksh and J. B. Keller, Strongest Columns and Iso­

perimetric Inequalities for Eigenvalues, J. Appl. Mech. (to be 
published). 
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A of Eq. (1) among all potentials satisfying the condition 

i'" Vn(x)dx= k. 
-'" 

(2) 

Here nand k are two real constants which characterize 
the class of potentials under consideration. 

Let us suppose that Vo(x) is a solution of this problem 
and that uo(x) and Ao are the corresponding eigenfunc­
tion and stationary eigenvalue. We introduce a family 
of potentials V(x,e) depending smoothly upon a 
parameter e, satisfying Eq. (2), and such that V(x,O) 
= Vo(x). Then the corresponding eigenfunction u(x,e) 
can be so normalized that it, as well as the eigenvalue 
A(e), depends smoothly upon E. If we denote differentia­
tion with respect to e by a dot, it follows that X(O)=O. 
We now differentiate Eq. (1) and (2) with respect to e 
and obtain 

(3) 

(4) 

The inhomogeneous equation (3) has a quadratically 
integrable solution only if the right-hand side is 
orthogonal to u, the solution of Eq. (1). But since 
u(x,e) is a smooth function of e which is quadratically 
integrable, it follows that 'It exists and is also quadra­
tically integrable. Therefore, the orthogonality condi­
tion is satisfied and it yields, when e= 0, 

(5) 

The choice of V(x,e) is arbitrary except that V(x,O) 
= Vo(x), that it be a smooth function of e and satisfy 
Eq. (2). Therefore, V is arbitrary except that it must 
satisfy Eq. (4). Thus Eq. (5) expresses the fact that u02 

is orthogonal to every function V which, by Eq. (4), is 
orthogonal to Von-1. This implies that u02 is a constant 
multiple of Von-1. We shall choose the multiplier to be 
unity, since u can be multiplied by a constant factor 
and remain a solution of Eq. (1). Thus we have 

(6) 

Let us now eliminate Vo from Eq. (1) by means of 
Eq. (6), and obtain the following nonlinear equation 
for uo: 

UOxz+ UOl+(2!n-1l+AoUO= 0. (7) 

To solve Eq. (7) we multiply it by UO:z; and integrate, 
obtaining 

(n-1) 
uO:z;2+-u02+(2!n-1l+AoU02= 0. 

n 
(8) 

infinite, in order that Uo be an eigenfunction. 
Eq. (8) we find 

( 
n-1 )t 

uO:z;=(-Ao)luo 1+~02!n-1 . 

From 

(9) 

To evaluate the integral which occurs in solving 
Eq. (9), it is convenient to replace Uo by Vo by means 
of Eq. (6). Then Eq. (9) becomes 

2(-A)t ( n-1 )! 
VO:z;=---Vo 1+--Vo . 

n-l nAo 
(10) 

The various solutions of Eq. (10) differ only by transla­
tions. We shall select that solution for which Vo(O) 
=n/(n-1). Then Eq. (to) yields 

_2 (_-_A_o)_\= fVO V-1(1+_n-_1V)-tdv 

n-1 n/n-1 nAo 

( 
n-1 )i 

= -2 tanh-1 1+--Vo . 
nAo 

(11) 

Upon solving Eq. (11) for Yo, we obtain 

-nAo [(-AO)tX] 
Vo(x)=-- sech2 • 

n-l n-l 
(12) 

From Eq. (12) we see that Vo is a periodic function of 
x if Ao>O, while Vo=O, if Ao=O. Since the integral in 
Eq. (2) would not exist, if Vo were periodic, and no 
eigenvalues would exist, if Vo=O, we conclude that 
Ao<O. Then Eq. (12) shows that Vo vanishes as Ixl 
becomes infinite. Since Uo must also vanish at infinity, 
we see from Eq. (6) that n> 1. 

Now Eqs. (12) and (2) yield a relation among Ao, n, 
and k which is 

(
-nAO)n 2(n. -1) i'" -- sech2nydy= k. 
n-1 (_Ao)l 0 

(13) 

Since n> 1 and Ao>O, we see from Eq. (13) that k>O. 
The integral in Eq. (13) has the value4 

i
'" r(n)rC!) 

sech2nydy . 
o 2r(n+!) 

(14) 

By using Eg. (14) in Eq. (13) and solving for Ao, we 
obtain 

-Ao= _F(n)k2!2n-1. (15) 
Here F(n) is given by 

[ 
r(n+!) (n_1)n]2!2n-1 

F(n)= -. 
(n-1}lrtr(n) n 

(16) 

The integration constant has been set equal to zero in 4 W. Grobner and N. Hofreiter, Integraltafel (Springer-Verlag, 
Eq.(8), since Uo and UO z must vanish when x becomes Berlin, Germany, 1949), Chap. II, p. 162, Eq. (12). 
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We have now found that for any k>O and any n> 1 
there is exactly one potential Vo(x) given by Eq. (12), 
with AD given by Eq. (15), which renders stationary 
an eigenvalue of Eq. (1). There is no such potential, 
if k~O or n~ 1. The corresponding eigenfunction Uo 
is, from Eqs. (6) and (12), 

{ 
-AOn [( -AO)iX ] } (n-l)/2 

uo(x)= --sech2 ---
n-l n-l 

(17) 

Since uo(x)¢O, Ao is the lowest eigenvalue of the 
potential Vo(x). 

3. ISOPERIMETRIC INEQUALITIES AND 
LOWER BOUNDS 

Let us now assume that the stationary value AO is 
actually the minimum value of the lowest eigenvalue of 
any potential satisfying Eq. (2), which we shall prove 
in the next section. Then, if A is the lowest eigenvalue 
of some potential Vex), we have A~AO provided Vex) 
satisfies Eq. (2). If we define k in terms of Vex) by 
Eq. (2), and use Eq. (15) for AO we then have the 
inequality 

[

CO ]2/(21)-1) 

A~ -F(n) f-co vn(x)dx . (18) 

Equality holds in Eq. (18) only if V(x)= Vo(x). For 
each n> 1 this inequality (18) is the isoperimetric 
inequality we sought. It provides lower bounds on the 
lowest eigenvalue A. A graph of F(n) is shown in 
Fig. 1. 

In the limit n= 1, Eq. (18) yields the following lower 
bound, obtained previously by Larry Spruch: 

A~ -l[f~ V (x)dx J. (19) 

As n tends to unity, the limiting form of the potential 
Vo(x) , given by Eq. (12), is the delta function for 
which equality holds in Eq. (19). 

To illustrate the use of Eq. (18), we shall now apply 
it to a square well of depth V and width 2a. The 

f(n) 

.s 

.2 

FIG. 1. The function F(n), given by Eq. (16), as a function of 
n. This function occurs in the isoperimetric inequality (18). As 
n becomes infinite, F(n) approaches unity. 

integral in Eq. (18) is then 2aV" and Eq. (18) becomes 

A/V~ -F(n) (4a2V)1/2n-1. (20) 

A simple calculation shows that the right-hand side 
of Eq. (20) is largest when n satisfies the equation 

r2(n) 
4a2V =?rn(n-l)---

r2(n+!) 

Xexp{ (2n-l)['lt(n+!)-'lt(n)J}. (21) 

Here 'It(n)=r'(n)/r(n). A graph of the lower bound 
Eq. (20) with n determined from Eq. (21) is shown in 
Fig. 2 as a function of a2V. For comparison the exact 
value of A is also shown. 

Let us now apply Eq. (18) to the exponential 
potential of depth V and range a given by 

V (x) = Ve-1xlia• (22) 

Upon inserting Eq. (22) into Eq. (18), we obtain 

A/V~ -F(n) (4a2V/n2)1/(2n-l). (23) 

The right-hand side of Eq. (23) is largest when n 

-X/VI ;::;--_ 

.• p-

.' 
I.t:: 

~ w ~ w ~ ~ ~ ~ ~ 
4al V 

FIG. 2. The best lower bound on the lowest eigenvalue of a 
square well potential of depth V and width 2a is shown as a 
function of alV (solid curve). The exact lowest eigenvalue is 
also shown for comparison (dashed curve). The ordinate is 
-A/V, and the bound is computed from Eqs. (20) apd (21). 

satisfies the equation 

r2(n) 
4a2V = ?rn8(n-l)--­

r 2(n+!) 

Xexp{ (2n-l)['lt(n+!)-'lt(n)-1/nJ}. (24) 

The lower bound on A/V given by Eq. (23), with n 
determined by Eq. (24), is shown in Fig. 3 as a function 
of a2V. 

As another example of the use of Eq. (18), let us 
apply it to the inverse ath power potential of depth V 
and range a given by 

V (x) = V/(1+a-1 Ixl )". (25) 

For this potential Eq. (18) yields 

A/V~ - F(n)[4a2V / (00-1)2]1/(2 .. -1). (26) 

The bound in Eq. (26) is largest when n satisfies the 
equation 

4a2V =1m(n-1) (oo-l)2[r2(n)/r2(n+ 1/2)J 
Xexp{ (2n-l)['lt(n+!)-'lt(n)-a/(n-l)]}. (27) 
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4. PROOF THAT loo IS A MINIMUM 

To prove that Ao is the minimum value of the lowest 
eigenvalue of any potential satisfying Eq. (2), we begin 
with the variational characterization of the lowest 
eigenvalue of a potential Vex). It is 

Following a suggestion of H. F. Weinberger, we make 
use of the Holder inequality which holds for any n> 1 

Equality obtains in Eq. (29) if and only if vn-1= v2, 

which is the same condition as Eq. (6). Upon inserting 
Eq. (29) into Eq. (28), and making use of Eq. (2), 
we obtain 

L: v2dx 1 (30) 

We must now show that the right-hand side of Eq. (30) 
is minimized when v= Vo. H it is, then the right side of 
Eq. (30) is just Ao since for Vo and Vo equality holds in 
Eq. (29), and, therefore, in Eq. (30). Then Eq. (30) 
yields the desired inequality 

(31) 

A necessary condition for v to minimize the expression 
on the right-hand side of Eq. (30) is obtained by 
requiring the first variation of that expression to vanish. 
This yields the condition 

(32) 

Here X' denotes the minimum value of the expression on 
the right-hand side in Eq. (30). This equation becomes 
identical with Eq. (7), if we introduce x'=cx and 
A"=c-2A' where 

(33) 

Therefore, its solution is just c1-nuo(x), as we see from 
Eq. (17), with A' in place of Ao. Then Eq. (33), which 
determines A', becomes identical with Eq. (13) so 
A'=Ao. Therefore, if the minimum in Eq. (30) exists, 
its value is Ao and the minimizing function is vo(x). 

The existence of the minimum in Eq. (30) can be 
proved by standard methods of the calculus of varia­
tions, although the proof is by no means trivial. 

FIG. 3. The best lower bound on the lowest eigenvalue of the 
exponential potential V(x)=Vexp(-lxlla) of depth V and 
range a is shown as a function of a2V. The ordinate is -xiV and 
the bound is computed from Eqs. (23) and (24). 

5. AN UPPER BOUND 

Let us now consider the isoperimetric problem 
obtained by replacing the class of potentials satisfying 
Eq. (2) by those satisfying the condition 

f'" V(x),r(x)dx=k. 
-00 

(2') 

Here p(x) is a given function and k is a given constant. 
By proceeding as in Sec. 2 we obtain, instead of Eq. (4), 

(4') 

Then instead of Eq. (6), we find from Eqs. (4') and (5) 
u02= pO or equivalently 

uo(x)=p(x). (6') 

Since Uo is quadratically integrable, we see that p(x) 
must also be so. Now Eqs. (1) and (6') yield 

Vo(x) = -Ao-p-lp,,:&. (12') 

From Eq. (2') and (12') we find Ao which is given by 

H Ao is the maximal lowest eigenvalue of any potential 
satisfying Eq. (2'), then A~Ao, or using Eqs. (15') 
and (2'), 

A~ (f~P:&2dX- L:,rVdX) / f~p2dX. (16') 

But Eq. (16') is true, since the right-hand side is just 
the Rayleigh quotient evaluated for the trial function 
p(x). Thus we have found that this Rayleigh quotient is 
the largest lowest eigenvalue of any potential satisfying 
Eq. (2') and it is attained for the potential in Eq. (12'). 

6. HIGHER DIMENSIONS 

Some of the preceding considerations apply in any 
number of dimensions. Even many of our equations 
remain valid, if we interpret x as a vector and replace 
u,,:& by V2u. With these changes Eqs. (1)-(7) remain 
valid. Then Eq. (7) is the equation which must be 
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satisfied by the eigenfunction Uo of the potential V 0 

which makes ~ stationary. If we seek a spherically 
symmetric solution uo(r), then Eq. (7) becomes, in 
three dimensions, 

All of the equations of Sec. 4 remain valid, if we also 
replace v",2 by (VV)2. However, the proof of the existence 
of the minimum in Eq. (30) has not been carried out, 
nor has it been shown that the minimizing potential, if 
one exists, is spherically symmetric. 

UOrr+ (2/r)uor +uo!+(2/n-l)+AOUo=0. (7") 

It has not been possible to solve this equation explicitly. 
All the results of Sec. 5 hold in any number of 

dimensions. 

Errata: Statistical Dynamics of Simple Cubic Lattices. Model for the Study of Brownian Motion 

O. Math. Phys. 1,309 (1960)J 

ROBERT J. RUBIN 
National Bureau of Standards, Washington Z5, D. C. 

In Eqs. (16), (17), (19), (AI), and in the integral at the end of Sec. ITI (p. 312), replace V by - V 
where it appears explicitly. In the fourth and fifth lines following Eq. (16), delete the expression in brackets. 

In Eq. (7a), replace (2N+l)-,,/2 by (2N+l)-". 
In Eq. (C2), replace In(tl>') by In(I/2p2). 
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